

SWARRNIM STARTUP AND INNOVATION UNIVERSITY

SWARRNIM INSTITUTE OF TECHNOLOGY

B.TECH. SEMESTER 1

STARTUP & INNOVATION UNIVERSITY

INDUC'S FIRST UNIVERSITY FOR STARTUP

Course Name: Maths-I

Subject Code: 23000001

СО	Completion of the course the student should Able to
CO 1	Analyze and manipulate infinite sequences and series.
CO 2	Evaluate limits involving indeterminate forms.
CO 3	Understand and apply techniques for improper integrals.
CO 4	Analyze functions of several variables and solve optimization problems.
CO 5	Solve systems of linear equations using matrices and determinants.
CO 6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.

Course Name: Fundamentals of Computer Programming

Subject Code: 23000004

CO	Completion of the course the student should Able to
CO 1	Apply fundamental principles of problem solving in software engineering.
CO 2	Apply basic programming principles using C language.
CO 3	Apply basic C program structure in software development
CO 4	Prepare graduates for professional careers in roles including, but not limited to, the following: computer programmer, software engineer, software systems designer, software applications developer, technical software project lead, computer systems analyst, computer systems programmer, software applications tester and maintainer
CO 5	To prepare graduates with the knowledge and skills to do advanced studies and research in computer science and related engineering and scientific disciplines
CO 6	To equip graduates with the communication skills, both oral and written, to become an effective team-oriented problem solver as well as an effective communicator with nontechnical stakeholders in computer and software systems development, maintenance and administration.

Course Name: Elements of Electrical Engineering

Subject Code: 23000012

СО	Completion of the course the student should Able to
CO 1	Define electrical current, potential difference, power and energy, sources of electrical energy, resistance and its behavior with temperature.
CO 2	Understand the different types of wires, cables, connectors & switches used for wiring Different types of domestic and industrial wiring.
CO 3	Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
CO 4	Analyze the steady state behavior of single phase and three phase AC electrical circuits.
CO 5	Compare various protective devices of working principle, usage and construction such as fuse, MCB, ELCB & Description of the such as fuse, MCB, ELCB & Descr
CO 6	Design and development of varies Electrical Wiring and electronics miniproctes.

Course Name: Elements of Mechanical Engineering

Subject Code: 23000003

СО	Completion of the course the student should Able to
CO 1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO 2	Make cal <mark>culations for commonly used working fluids i.</mark> e. ideal gases and steam.
CO 3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO 4	Discuss working and applications of steam boilers and various energy conversion systems.
CO 5	Discuss various power transmission elements and properties of various engineering materials with their applications.

Course Name: Environmental Studies

Subject Code: 23000006

СО	Completion of the course the student should Able to
CO 1	Describe natural resources, importance of ecosystem and conservation of biodiversity with respect to multiple disciplines.
CO 2	Explain causes, effects, solutions for various pollution problems and its minimization strategies.
CO 3	Differentiate between requirements of laws and regulations for environmental conservation and applicability of legislations in society and industries.
CO 4	Discuss environmental ethics and their implementation for betterment of environment and human life.

Course Name: Orientation Program in Startup and Entrepreneurship

Subject Code: 12300001

СО	Comple <mark>tion of the course the stud</mark> ent should Able to
CO 1	Apply the basic principles of entrepreneurship
CO 2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and various entrepreneurial opportunities.
CO 3	Understanding various individual attributes of entrepreneurial personality traits, entrepreneurial characteristics, behavioural attributes and importance of creativity and innovation.
CO 4	Develop an understanding of best techniques for idea generation and opportunities exploration.

Course Name: Workshop

Subject Code: 23000029

СО	Completion of the course the student should Able to
CO 1	Understand applications of hand tools and power tools and operations of machine tools.
CO 2	Understand the operations of machine tools.
CO 3	Select the appropriate tools required for specific operation.
CO 4	Comprehend the safety measures required to be taken while using the tools.
CO 5	Prepare Fitting, Carpentry, Plumbing, Welding, and Tin-smithy Jobs.

Course Name: Electronics Workshop

Subject Code: 23000002

Learning Outcomes

CO Completion of the course the student should Able to CO 1 Measure different electrical quantities. CO 2 Understand the requirements and operation of safety devices CO 3 Select the appropriate tools and components required for the specific operation CO 4 Wire and trouble shoot of household appliances.

INDUST LIBERT UNIVERSITY FOR STARTUP

Course Name: Maths-II

Subject Code: 23000010

СО	Completion of the course the student should Able to
CO 1	Understand vectors in $\mathbb{R}^n \times \mathbb{R}^n$ and operations involving linear combinations.
CO 2	Identify subspaces and determine basis and dimension and Perform coordinate transformations and understand the change of basis.
CO 3	Understand linear transformations and their properties and Represent linear transformations with matrices and explore the concept of similarity.
CO 4	Apply inner product spaces to least squares approximation and diagonalization of symmetric matrices and Explore applications of quadratic forms and optimization.
CO 5	Apply double and triple integrals over different regions and Utilize Fubini's theorem and change of variables in multiple integrals.
CO <mark>6</mark>	Apply integration techniques to calculate volumes of various solids.

Course Name: Engineering Physics

Subject Code: 23000005

СО	Completion of the course the student should Able to
CO 1	Understand the basic concepts and classification of sound.
CO 2	Analyze applications of superconductors.
CO 3	Understand the fundamentals of laser radiation.
CO 4	Evaluate the applications of optical fibers.
CO 5	Apply dielectric materials in capacitors and transformers.
CO 6	Explore applications of magnetic materials.
CO 7	Explain the synthesis and applications of nonmaterial's.

Course Name: Communication Skills

Subject Code: 23000008

СО	Completion of the course the student should Able to
CO 1	To improve students' communicative and linguistic approach in English.
CO 2	To provide an ice-breaking technique using LSRW skills and soft skills
CO 3	To learn techniques to improve overall communication abilities and effective use of writing in the field of advertising and public relations.
CO 4	Improve communication skills through practicing debate, discussion and appearing in interview.
CO 5	Use of ethical consideration in order to develop good etiquettes both in online and offline communication.

Course Name: Basic Electronics

Subject Code: 23000009

СО	Comple <mark>tion o</mark> f the course the student should Able to
CO 1	To study basics of semiconductor & camp; devices and their applications in different areas.
CO 2	Demonstrate the operating principle and output characteristics of pn junction diodes,
	zener diode, Varactor diode, BJT, rectifiers and different diode circuits
CO 3	Compute and characterization of different biasing techniques to operate transistor
	FET, MOSFET and operational amplifier in different modes
CO 4	To implementation of basic digital gates using diode and basic family of logic families

Course Name: Engineering Graphics

Subject Code: 23000011

СО	Completion of the course the student should Able to
CO 1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO 2	Understanding the object through orthographic projections.
CO 3	Construct basic and intermediate geometry and application of engineering curves.
CO 4	Enhance visualization skills for developing new products.
CO 5	Develop new products through technical communication skill in the form of communicative drawings.
CO 6	Develop the theory of orthographic projection and views.

Course Name: Elements of Civil Engineering

Subject Code: 23000015

СО	Comple <mark>tion of the course the student should A</mark> ble to			
CO 1	Carry out simple land survey to prepare maps with existing details.			
CO 2	Find out area of irregular shaped plane figures.			
CO 3	Understand building plan elevation and section.			
CO 4	Get acquainted with const <mark>ruction mat</mark> erials.			
CO 5	Get acquainted with hydrological cycle and hydraulic structures.			
CO ₆	Get acquainted with mass transportation systems.			

Course Name: BASIC PROGRAM IN ENTREPRENURESHIP

Subject Code: 12300002

СО	Comple <mark>tion of the course the student should A</mark> ble to			
CO 1	Develop an understanding of best techniques for idea generation, opportunities exploration, and market research.			
CO 2	Check technical, market, financial and other types of Feasibility of their business idea			
CO 3	Develop business model to describe the rationale of how an organization creates, delivers, and captures value			
CO 4	Conduct the customer's survey to know the need of their business idea.			

Course Name: Chemistry

Subject Code: 23020216

СО	Completion of the course the student should Able to			
CO 1	To relate periodic properties such as ionization potential, oxidation states and electro negativity.			
CO 2	To analyze microscopic chemistry in terms of atomic and molecular orbital's and			
	inter molecular forces.			
CO 3	To describe the importance and relevance of chemistry in our everyday life			
CO 4	To select the appropriate chemical material and utilization of it.			
CO 5	To interpret the methods of science as a logical means of problem solving.			
CO <mark>6</mark>	To distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.			

Course Name: Personality Development

Subject Code: 24190203

СО	Completion of the course the student should Able to		
CO 1	To provide an icebreaking technique using LSRW skills and soft skills		
CO 2	To learn techniques to improve overall communication abilities and effective use of writing in the field of advertising and public relations.		
CO 3	Improve communication skills through practicing debate, discussion and appearing in interview.		
CO 4	Use of ethical consideration in order to develop good etiquettes both in online and offline communication.		

Course Name: Web Technology

Subject Code: 24190204

со	Completion of the course the student should Able to		
CO 1	Write and debug JavaScript to enhance user interactivity and improve the user experience.		
CO 2	Understand server-side programming concepts using languages such as Node.js, Python, or PHP.		
CO 3	Create responsive and visually appealing web pages using HTML, CSS, and JavaScript.		
CO 4	Explain the basic principles of how the web works, including HTTP, URLs, and web servers.		
CO 5	Use Git for version control, including branching, merging, and collaboration workflows.		

Course Name: Introduction to Cloud Technology

Subject Code: 24190205

Learning Outcomes

CO Completion of the course the student should Able to CO 1 Compare major cloud service providers (e.g., AWS, Azure, Google Cloud) and their offerings. CO₂ Recognize key security principles and practices in cloud environments, including data protection, compliance, and identity management. CO₃ Set up and manage basic cloud services, such as virtual machines, storage solutions, and databases. CO₄ Use cloud management and monitoring tools to oversee cloud resources, optimize performance, and manage costs. CO₅ Identify emerging trends in cloud technology, such as serverless computing, containerization, and edge computing.

Course Name: Engineering Graphics & Design

Subject Code: 24190206

CO	Completion of the course the student should Able to			
CO 1	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.			
CO 2	Apply geometric construction methods to create and analyze shapes, dimensions, and spatial relationships.			
CO 3	Construct and visualize 3D models using CAD software, demonstrating an understanding of spatial relationships and design principles.			
CO 4	Analyze and evaluate design concepts for functionality, manufacturability, and aesthetics, using appropriate tools and techniques.			
CO 5	Work collaboratively in teams to develop a design project from concept through to presentation, demonstrating project management and teamwork skills.			
CO 6	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.			

Course Name: Mentoring and Counselling

Subject Code: 24190207

Learning Outcomes

CO Completion of the course the student should Able to CO 1 Explain key theories and principles of mentoring and counseling, including various approaches and methodologies. CO 2 Demonstrate active listening, empathy, and nonverbal communication techniques essential for building rapport with mentees or clients. CO 3 Foster an inclusive and supportive environment that encourages open communication and trust between the mentor/counselor and the mentee/client. CO 4 Engage in self-reflection to assess personal strengths and areas for growth as a mentor or counselor, fostering continuous professional development.

Course Name: Open Project / MOOC

Subject Code: 24190208

со	Comple <mark>tion of the course the stud</mark> ent should Able to
CO 1	Identify and articulate the goals and objectives of their open project, ensuring alignment with personal or community needs.
CO 2	Utilize project management tools and techniques to organize, monitor, and evaluate project progress effectively.
CO 3	Identify, evaluate, and utilize open educational resources (OER) to enhance learning and project outcomes.
CO 4	Engage in self-reflection to assess personal growth, learning experiences, and challenges faced during the project.

SWARRNIM INSTITUTE OF TECHNOLOGY

DEPARTMENT: COMPUTER ENGINEERING

Semester: 1

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Maths-I	Course code	23000001
Course type:	Engineering Science	Course credit:	5

CO 1	Analyze and manipulate infinite sequences and series.			
CO 2	Evaluate limits involving indeterminate forms.			
CO 3	Understand and apply techniques for improper integrals.			
CO 4	Analyze functions of several variables and solve optimization problems.			
CO 5	Solve systems of linear equations using matrices and determinants.			
CO 6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.			

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Fundamentals of Computer	Course code	23000004
	Programming		
Course type:	Engineering Science	Course credit:	4

CO 1	Apply fundamental principles of problem solving in software engineering.			
CO 2	Apply basic programming principles using C language.			
CO 3	Apply basic C program structure in software development			
CO 4	Prepare graduates for professional careers in roles including, but not limited to, the following: computer programmer, software engineer, software systems designer, software applications developer, technical software project lead, computer systems analyst, computer systems programmer, software applications tester and maintainer.			
CO 5	To prepare graduates with the knowledge and skills to do advanced studies and research in computer science and related engineering and scientific disciplines			
CO 6	To equip graduates with the communication skills, both oral and written, to become an effective team-oriented problem solver as well as an effective communicator with nontechnical stakeholders in computer and software systems development, maintenance and administration.			

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Elements of Electrical Engineering	Course code	23000012
Course type:	Engineering Science	Course credit:	5

CO 1	Define electrical current, potential difference, power and
	energy, sources of electrical energy, resistance and its
	behavior with temperature.
CO 2	Understand the different types of wires, cables, connectors & Damp;
	switches used for wiring Different types of domestic and
	industrial wiring.
CO 3	Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
CO 4	Analyze the steady state behavior of single phase and three phase AC electrical circuits.
CO 5	Compare various protective devices of working principle, usage and construction such as fuse, MCB, ELCB & amp; Relays.
CO 6	Design and development of varies Electrical Wiring and electronics miniproctes.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Elements of Mechanical Engineering	Course code	23000003
Course type:	Engineering Science	Course credit:	6

CO 1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO 2	Make calculations for commonly used working fluids i.e. ideal gases and steam.
CO 3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO 4	Discuss working and applications of steam boilers and various energy conversion systems.
CO 5	Discuss various power transmission elements and properties of various engineering materials with their applications.

NDEAS PRESENTED LININGERS FLY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Environmental Studies	Course code	23000006
Course type:	Engineering Science	Course credit:	2

CO 1	Describe natural resources, importance of ecosystem and conservation of biodiversity with respect to multiple disciplines.
CO 2	Explain causes, effects, solutions for various pollution problems and its minimization strategies.
CO 3	Differentiate between requirements of laws and regulations for environmental conservation and applicability of legislations in society and industries.
CO 4	Discuss environmental ethics and their implementation for betterment of environment and human life.

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Orientation Program in Startup and Entrepreneurship	Course code	12300001
Course type:	Engineering Science	Course credit:	3

CO 1	Apply the basic principles of entrepreneurship
CO 2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and various entrepreneurial opportunities.
CO 3	Understanding various individual attributes of entrepreneurial personality traits, entrepreneurial characteristics, behavioural attributes and importance of creativity and innovation.
CO 4	Develop an understanding of best techniques for idea generation and opportunities exploration.

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Workshop	Course code	23000029
			1.00
Course type:	Engineering Science	Course credit:	4

CO 1	Understand applications of hand tools and power tools and operations of machine tools.
CO 2	Understand the operations of machine tools.
CO 3	Select the appropriate tools required for specific operation.
CO 4	Comprehend the safety measures required to be taken while using the tools.
CO 5	Prepare Fitting, Carpentry, Plumbing, Welding, and Tin-smithy Jobs.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Electronics Workshop	Course code	23000002
Course type:	Engineering Science	Course credit:	4

CO 1	Measure different electrical quantities.
CO 2	Understand the requirements and operation of safety devices
CO 3	Select the appropriate tools and components required for the specific operation
CO 4	Wire and trouble shoot of household appliances.
CO 4	whe and trouble shoot of household appliances.

INDUCT FIRST UNIVERSITY FOR STARTUP

SEMESTER:-2

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Maths-II	Course code	23000010
Course type:	Engineering Science	Course credit:	5

1	
CO 1	Understand vectors in $\mathbb{R}^n \times \mathbb{R}^n$ and operations involving linear combinations.
CO 2	Identify subspaces and determine basis and dimension and Perform coordinate
	transformations and understand the change of basis.
	transformations and understand the change of oasis.
CO 3	Understand linear transformations and their properties and Represent linear
	transformations with matrices and explore the concept of similarity.
CO 4	Apply inner product spaces to least squares approximation and diagonalization of
	symmetric matrices and Explore applications of quadratic forms and optimization.
CO 5	Apply double and triple integrals over different regions and Utilize Fubini's theorem
	and change of variables in multiple integrals.
CO 6	Apply integration techniques to calculate volumes of various solids.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Engineering Physics	Course code	23000005
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic concepts and classification of sound.
CO 2	Analyze applications of superconductors.
CO 3	Understand the fundamentals of laser radiation.
CO 4	Evaluate the applications of optical fibers.
CO 5	Apply dielectric materials in capacitors and transformers.
CO 6	Explore applications of magnetic materials.
CO 7	Explain the synthesis and applications of nonmaterial's.

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Communication Skills	Course code	23000008
Course type:	Engineering Science	Course credit:	3

CO 1	To improve students' communicative and linguistic approach in English.
CO 2	To provide an ice-breaking technique using LSRW skills and soft skills
CO 3	To learn techniques to improve overall communication abilities and effective use of writing in the field of advertising and public relations.
CO 4	Improve communication skills through practicing debate, discussion and appearing in interview.
CO 5	Use of ethical consideration in order to develop good etiquettes both in online and offline communication.

NIDLA'S TERST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Basic Electronics	Course code	23000009
Course type:	Engineering Science	Course credit:	5

CO 1	To study basics of semiconductor & amp; devices and their applications in different
	areas.
CO 2	Demonstrate the operating principle and output characteristics of pn junction diodes,
	zener diode, Varactor diode, BJT, rectifiers and different diode circuits
CO 3	Compute and characterization of different biasing techniques to operate transistor
	FET, MOSFET and operational amplifier in different modes
CO 4	To implementation of basic digital gates using diode and basic family of logic Families

INDUCT FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics	Course code	23000011
			122
Course type:	Engineering Science	Course credit:	6

CO 1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO 2	Understanding the object through orthographic projections.
CO 3	Construct basic and intermediate geometry and application of engineering curves.
CO 4	Enhance visualization skills for developing new products.
CO 5	Develop new products through technical communication skill in the form of communicative drawings.
CO 6	Develop the theory of orthographic projection and views.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Elements of Civil Engineering	Course code	23000015
Course type:	Engineering Science	Course credit:	6

CO 1	Carry out simple land survey to prepare maps with existing details.
CO 2	Find out area of irregular shaped plane figures.
CO 3	Understand building plan elevation and section.
CO 4	Get acquainted with construction materials.
CO 5	Get acquainted with hydrological cycle and hydraulic structures.
CO 6	Get acquainted with mass transportation systems.

INDUC'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	BASIC PROGRAM IN	Course code	12300002
	ENTREPRENURESHIP		
Course type:	Engineering Science	Course credit:	3

CO 1	Develop an understanding of best techniques for idea generation, opportunities exploration, and market research.
CO 2	Check technical, market, financial and other types of Feasibility of their business idea
CO 3	Develop business model to describe the rationale of how an organization creates, delivers, and captures value
CO 4	Conduct the customer's survey to know the need of their business idea.

NODELS LIBST LINIVERSHIY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Chemistry	Course code	23020216
	, and		
Course type:	Engineering Science	Course credit:	4

CO 1	To relate periodic properties such as ionization potential, oxidation states and electro negativity.
CO 2	To analyze microscopic chemistry in terms of atomic and molecular orbital's and inter molecular forces.
CO 3	To describe the importance and relevance of chemistry in our everyday life
CO 4	To select the appropriate chemical material and utilization of it.
CO 5	To interpret the methods of science as a logical means of problem solving.
CO 6	To distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.

NDIA'S FIRST UNIVERSITY FOR S

Bhoyan Rathod.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Personality Development	Course code	24190203
Course type:	Engineering Science	Course credit:	3

CO 1	To provide an icebreaking technique using LSRW skills and soft skills
CO 2	To learn techniques to improve overall communication abilities and effective
	use of writing in the field of advertising and public relations.
CO 3	Improve communication skills through practicing debate, discussion and
	appearing in interview.
CO 4	Use of ethical consideration in order to develop good etiquettes both in online
	and offline communication.
	THE R. P. LEWIS CO., LANSING, MICH. 40, 1817

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Web Technology	Course code	24190204
Course type:	Engineering Science	Course credit:	4

CO 1	Write and debug JavaScript to enhance user interactivity and improve the user experience.
CO 2	Understand server-side programming concepts using languages such as Node.js, Python, or PHP.
CO 3	Create responsive and visually appealing web pages using HTML, CSS, and JavaScript.
CO 4	Explain the basic principles of how the web works, including HTTP, URLs, and web servers.
CO 5	Use Git for version control, including branching, merging, and collaboration workflows.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Introduction to Cloud	Course code	24190205
	Technology		
Course type:	Engineering Science	Course credit:	3

CO 1	Compare major cloud service providers (e.g., AWS, Azure, Google Cloud) and their offerings.
CO 2	Recognize key security principles and practices in cloud environments, including data protection, compliance, and identity management.
CO 3	Set up and manage basic cloud services, such as virtual machines, storage solutions, and databases.
CO 4	Use cloud management and monitoring tools to oversee cloud resources, optimize performance, and manage costs.
CO 5	Identify emerging trends in cloud technology, such as serverless computing, containerization, and edge computing.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics &	Course code	24190206
	Design		
Course type:	Engineering Science	Course credit:	4

CO 1	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.
CO 2	Apply geometric construction methods to create and analyze shapes, dimensions, and spatial relationships.
CO 3	Construct and visualize 3D models using CAD software, demonstrating an understanding of spatial relationships and design principles.
CO 4	Analyze and evaluate design concepts for functionality, manufacturability, and aesthetics, using appropriate tools and techniques.
CO 5	Work collaboratively in teams to develop a design project from concept through to presentation, demonstrating project management and teamwork skills.
CO 6	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Mentoring and Counselling	Course code	24190207
Course type:	Engineering Science	Course credit:	

CO 1	Explain key theories and principles of mentoring and counseling, including various approaches and methodologies.
CO 2	Demonstrate active listening, empathy, and nonverbal communication techniques essential for building rapport with mentees or clients.
CO 3	Foster an inclusive and supportive environment that encourages open communication and trust between the mentor/counselor and the mentee/client.
CO 4	Engage in self-reflection to assess personal strengths and areas for growth as a mentor or counselor, fostering continuous professional development.

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	2
Course title:	Open Project / MOOC	Course code	24190208
Course type:	Engineering Science	Course credit:	

CO 1	Identify and articulate the goals and objectives of their open project, ensuring alignment with personal or community needs.
CO 2	Utilize project management tools and techniques to organize, monitor, and evaluate project progress effectively.
CO 3	Identify, evaluate, and utilize open educational resources (OER) to enhance learning and project outcomes.
CO 4	Engage in self-reflection to assess personal growth, learning experiences, and challenges faced during the project.

Semester: 3

Program:	Bachelor of Engineering	Branch:	CE
Year:	2 nd Year	Semester:	3
Course title:	Maths - III	Course code	2300015
Course type:	Engineering Science	Course credit:	5

CO 1	Apply Fourier series to analyze and represent periodic functions.
CO 2	Apply Laplace transforms to solve differential equations and system problems.
CO 3	Apply methods such as integrating factor, Bernoulli equations, and linear differential equations.
CO 4	Apply series solutions to solve differential equations and analyze the convergence and divergence of series solutions.
CO 5	Apply the method of separation of variables to solve PDEs to analyze solutions in cylindrical and spherical polar coordinates.

Program:	Bachelor of Engineering	Branch:	CE
Year:	2 nd Year	Semester:	3
Course title:	Digital Electronics	Course code	23070301
Course type:	Engineering Science	Course credit:	5

CO 1	Have a thorough understanding of the fundamental concepts and techniques used in
CO 2	Apply on Gate of digital electronics.
CO 3	To understand and examine the structure of various number systems and its
CO 4	Application in digital design.
CO 5	The ability to understand, analyze and design various combinational and sequential

ESTERSO DECEMBERATION STA

Program:	Bachelor of Engineering	Branch:	CE
Year:	2 nd Year	Semester:	3
Course title:	Data Structure And Algorithm	Course code	23040302
Course type:	Engineering Science	Course credit:	5

CO 1	Learn the basic types for data structure, implementation and application.
CO 2	Know the strength and weakness of different data structures.
CO 3	Use the appropriate data structure in context of solution of given problem
CO 4	Develop programming skills which require solving given problem.
CO 5	Learn the data structure, implementation and application.

Program:	Bachelor of Engineering	Branch:	СЕ
Year:	2 nd Year	Semester:	3
Course title:	Database Management System	Course code	23040301
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic concepts of database management systems (L2)
CO 2	Apply SQL to find solutions to a broad range of queries (L3).
CO 3	Apply normalization techniques to improve database design (L3)
CO 4	Analyze a given database application scenario to use ER model
CO 5	Conceptual design of the database

Bhoyan

Program:	Bachelor of Engineering	Branch:	СЕ
Year:	2 nd Year	Semester:	3
Course title:	Computer Network	Course code	23040303
Course type:	Engineering Science	Course credit:	4

CO 1	Understand Basics of Computer Networks and different
CO 2	Transmission Media.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Computer network internet effectively.
CO 5	Understand various protocol layers and inner operations.

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

Program:	Bachelor of Engineering	Branch:	CE
Year:	2 Year	Semester:	4
Course title:	Operating System	Course code	23040401
Course type:	Engineering Science	Course Credit	4

CO 1	Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and their communication.
CO 2	Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and to communication.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Discuss the storage management policies with respect to different storage management
	technologies
CO 5	Analyze the memory management and its allocation policies

Program:	Bachelor of Engineering	Branch:	CE
Year:	2Year	Semester:	4
Course title:	Object Oriented Programming with C++	Course code	23040402
Course type:	Engineering Science	Course Credit	5

CO 1	Codes basic programs in Java programming language.
CO 2	Prints to the screen in Java language.
CO 3	Makes relational operations in Java.
CO 4	Constructs loops in Java.
CO 5	Defines arrays in Java and uses them.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	2Year	Semester:	4
Course title:	System Software	Course code	23040403
Course type:	Engineering Science	Course Credit	4

CO 1	To understand the relationship between system software and machine
CO 2	To understand architecture.
CO 3	To understand the processing of an HLL program for execution on a computer.
CO 4	To understand the process of scanning and parsing.
CO 5	To know the design and implementation of assemblers, macro processor, linker

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE
Year:	2 Year	Semester:	4
Course title:	Computer Organization and MicroProcessor	Course code	23070401
Course type:	Engineering Science	Course Credit	4

CO 1	To know the background of internal communication of computer
CO 2	To have better idea on how to write assemble language programs
CO 3	To be clear with memory management techniques
CO 4	To better with IO devices communication with processor
CO 5	To notice how to perform computer arithmetic operations

Semester: 5

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	5
Course title:	Object Oriented Programming with JAVA	Course code	23040501
Course type:	Engineering Science	Course Credit	6

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	5
Course title:	Theory of Computation	Course code	23040502
Course type:	Engineering Science	Course Credit	6

CO 1	To give an overview of the theoretical foundations of computer science from
CO 2	the perspective of formal languages
CO 3	To illustrate finite state machines to solve problems in computing
CO 4	To explain the hierarchy of problems arising in the computer sciences.
CO 5	To familiarize Regular grammars, context frees grammar

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

Innova

Bhoyan Rathod Gandhina

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	5
Course title:	Information Network & Cyber Security	Course code	23040503
Course type:	Engineering Science	Course Credit	4

CO 1	Identify some of the factors driving the need for network security.
CO 2	Identify and classify particular examples of attacks.
CO 3	Define the terms vulnerability, threat and attack.
CO 4	Identify physical points of vulnerability in simple networks.
CO 5	Identify the need for network security.

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	5
Course title:	Web Technology	Course code	23040504
Course type:	Engineering Science	Course Credit	4

CO 1	Students are able to develop a dynamic webpage by the use of java script and
CO 2	DHTML.
CO 3	Students will be able to write a well formed / valid XML document.
CO 4	Students will be able to connect a java program to a DBMS and perform insert,
CO 5	DHTML update and delete operations on DBMS table.

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	5
Course title:	Computer Graphics and Visulization	Course code	23040506
Course type:	Engineering Science	Course Credit	4

CO 1	Understand the basics of computer graphics, different
CO 2	Graphics systems and applications of computer graphics.
CO 3	Discuss various algorithms for scan conversion and
CO 4	Filling of basic objects and their comparative analysis.
CO 5	Use of geometric transformations on graphics objects

Semester 6

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	6
Course title:	Wireless Network	Course code	23040601
Course type:	Engineering Science	Course Credit	4

CO 1	Conversant with the latest 3G/4G and Wi-MAX networks and its architecture.
CO 2	Design and implement wireless network environment for any application using latest
CO 3	Wireless protocols and standards.
CO 4	Implement different type of applications for smart phones and mobile devices with
CO 5	latest network strategies

Bhoyan Rathod, Candhinagar of Candhi

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	6
Course title:	Compiler Design	Course code	23040602
Course type:	Engineering Science	Course Credit	4

CO 1	Realize basics of compiler design and apply for real time applications.
CO 2	To introduce different translation languages
CO 3	To understand the importance of code optimization
CO 4	To know about compiler generation tools and techniques
CO 5	To learn working of compiler and non compiler applications

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	6
Course title:	Cloud Computing	Course code	23040603
Course type:	Engineering Science	Course Credit	4

CO 1	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came	
	about, the characteristics, advantages and challenges brought about by the various models and	
	services in cloud computing.	
CO 2	Apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and	
	cost.	
CO 3	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and	
	outline their role in managing infrastructure in cloud computing.	
CO 4	Analyze various cloud programming models and apply them to solve problems on the cloud.	
CO 5	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came	
	about, the characteristics, advantages and challenges brought about by the various models and	
	services in cloud computing.	

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	6
Course title:	Data Mining and Warehousing	Course code	23040604
Course type:	Engineering Science	Course Credit	4

CO 1	Be familiar with mathematical foundations of data mining tools
CO 2	Understand and implement classical models and algorithms in data warehouses and
CO 3	data mining discovered by association rule
CO 4	Characterize the kinds of patterns that can be discovered by association rule
CO 5	data mining, classification and clustering.

Program:	Bachelor of Engineering	Branch:	CE
Year:	3 Year	Semester:	6
Course title:	Advance JAVA	Course code	23040606
Course type:	Engineering Science	Course Credit	5

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

Semester 7

Program:	Bachelor of Engineering	Branch:	CE
Year:	4 Year	Semester:	7
Course title:	Artificial Intelligence	Course code	23040701
Course type:	Engineering Science	Course Credit	5

CO 1	Develop mathematical thinking and problem solving skills associated with research and writing proofs.
CO 2	Get exposure to a wide variety of mathematical concepts used in computer science discipline like probability.
CO 3	Use Graph Theory for solving problems.
CO 4	Acquire basic knowledge of sampling and estimation.
CO 5	Understand basic concepts of hypothesis

Program:	Bachelor of Engineering	Branch:	CE
Year:	4 Year	Semester:	7
Course title:	Python Programming	Course code	23040702
Course type:	Engineering Science	Course Credit	5

CO 1	Create your first program in Python IDLE
CO 2	Implement OOPs concepts in your programming
CO 3	Use Arrays, and Data structures
CO 4	Create an application with the support of graphics in Python
CO 5	Implement error handling

NDIA'S FIBST UNIVERSITY FOR STARTUP

Semester: 8

Program:	Bachelor of Engineering	Branch:	CE
Year:	4 Year	Semester:	8
Course title:	Programming with XML & JSON	Course code	23040802
Course type:	Engineering Science	Course Credit	6

CO 1	Students are able to develop a dynamic webpage by the use of java script and DHTML.
CO 2	Students will be able to write a well formed / valid XML document. ·
CO 3	Students will be able to connect a java program to a DBMS and perform insert, update.
CO 4	Delete operations on DBMS table.
CO 5	Students will be able to write a server side java application called Servlet to catch form data

SWARRNIM STARTUP AND INNOVATION UNIVERSITY

SWARRNIM INSTITUTE OF TECHNOLOGY

PROGRAM NAME: - ELECTRICAL ENGINEERING

ACADEMIC YEAR 2023 -2024

COURSE OUT COME OF B.TECH ELECTRICAL ENGINEERING SEMESTER I /II

B.TECH SEMESTER 1st/2nd ELECTRICAL

Program:	Bachelor of Engineering	Branch:	Electrical /Mechanical/Civil/Computer/IT /Chemical
Year:	1 ST Year	Semester:	1 st /2 nd
Course title:	Elements of Electrical	Course code	23000012
	Engineering		
Course	Engineering Science	Course	5
type:	die	credit:	ab All

Course Outcome:

CO 1	Define electrical current, potential difference, power and energy, sources of electrical
	energy, resistance and its behavior with temperature.
CO 2	Understand the different types of wires, cables, connectors & switches used for wiring
	Different types of domestic and industrial wiring.
CO 3	Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
CO 4	Analyze the steady state behavior of single phase and three phase AC electrical circuits.
CO 5	Compare various protective devices of working principle, usage and construction such as
	fuse, MCB, ELCB & Relays.
CO 6	Design and development of varies Electrical Wiring and electronics mini projects.

Program:	Bachelor of Engineering	Branch:	Electrical / Computer/IT
Year:	1 ST Year	Semester:	1 st /2 nd
Course title:	Electronics Workshop	Course code	23000002
Course type:	Engineering Science	Course credit:	2

Course Outcome:

CO-1	Measure different electrical quantities.
CO-2	Understand the requirement and operation of safety devices
CO-3	Select the appropriate tools and components required for specific operation
CO-4	Wire and trouble shoot of house-hold appliances.

NIDE S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	Electrical / Computer/IT
Year:	1 ST Year	Semester:	1 st /2 nd
Course title:	Basic Electronics	Course code	23000009
Course type:	Engineering Science	Course credit:	5

Course Outcome:

Sr.	CO statement		
No.			
CO-1	To study basics of semiconductor & devices and their applications in different		
	areas.		
CO-2	Demonstrate the operating principle and output characteristics of pn junction		
	diodes, zener diode, Varactor diode, BJT, rectifiers and different diode circuits		
CO-3	Compute and characterization of different biasing techniques to operate transistor,		
	FET , MOSFET and operational amplifier in different modes		
CO-4	To implementation of basic digital gates using diode and basic family of logic		
	families		

INDIA'S FIBST UNIVERSITY FOR STARTUP

SWARRNIM STARTUP AND INNOVATION UNIVERSITY

SWARRNIM INSTITUTE OF TECHNOLOGY

PROGRAM NAME: - ELECTRICAL ENGINEERING

ACADEMIC YEAR 2023 -2024

COURSE OUT COME OF B.TECH ELECTRICAL ENGINEERING

SEMESTER III - VIII

B.TECH SEMESTER 3RD ELECTRICAL

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	Electrical measurements &	Course code	23050301
	measuring Instruments		
Course type:	Professional Core	Course credit:	4

Course Outcome: -

CO STATEMENTS

	CO 1	Understand the working principle and construction of the measuring instruments and recorders.
	CO 2	Calibrate the measuring devices such as meters and transducers.
	CO 3	Measure various electrical and physical quantities and parameters using meters and transducers.
Ī	CO 4	Analyze the performance of electrical instruments and recorders

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	Digital Electronics	Course code	23070301
Course type:	Professional Core	Course credit:	4

Course Outcome: -

CO STATEMENTS

CO 1	Understand different number systems and its inter-conversions.
CO 2	Understand the concept of Boolean algebra and its different theorems, properties etc.

CO 3	Understand simplification of Boolean functions.
CO 4	Understand the construction and working of different combinational circuits etc.
CO 5	Understand different flip-flops and its applications.
CO 6	Understand different sequential logic circuits and basic design of sequential circuits and counters.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	DC Machines &	Course code	23050303
	Transformer		
Course	Professional Core	Course	4
type:		credit:	

CO STATEMENTS

CO 1	Understand working principle, performance, control and applications of DC Machines and Transformer.
CO 2	Identify, formulate and solve DC machine and Transformer related problems.
CO 3	Carry out test and conduct performance experiments on DC machine and Transformer.
CO 4	Analyze testing and and conduct performance experiments on DC machine and Transformer.
CO 5	Observe the parameters taken into consideration for testing of Machines.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	Circuits & Networks	Course code	23050302
Course type:	Professional Core	Course credit:	5

TIBST UNIVERSITY FOR STARTUP

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

CO STATEMENTS

CO 1	To apply various circuit laws like Ohm's Law, KVL, KCL, etc.
CO 2	To apply dot convention technique for analysis of transformer based circuits.
CO 3	To apply node and mesh circuit analysis techniques.
CO 4	To apply various network theorems such as Superposition, Thevenin, Norton, Reciprocity, Maximum Power
	Transfer, Millman's Theorem, etc
CO 5	To analyze behavior of passive circuits such as RC, RL and RLC.
CO 6	To obtain transfer function of a network.
CO 7	To analyze circuit taking into account initial conditions.
CO 8	To calculate two port parameters such as y, z, h, ABCD, etc. for the given two port network.
CO 9	To understand basics of network topologies and the tieset and cutset schedules.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering/Electronics and Communication Engi.
Year:	2 nd Year	Semester:	4
Course title:	Signals & System	Course code	23070402
Course type:	Professional core	Course credit:	4

Course Outcome: -

CO 1	Understand about various types of signals, classify them, analyze them, and perform various operations on them.
CO 2	Understand about various types of systems, classify them, analyze them and understand their response behavior.
CO 3	Appreciate use of transforms in analysis of signals and system.
CO 4	Carry simulation on signals and systems for observing effects of applying various properties and operations
CO 5	Create strong foundation of communication and signal processing to be studied in the subsequent semester

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	Electric power generation	Course code	23050403
Course type:	Professional core	Course credit:	5

CO STATEMENTS

CO 1	Explain hydro energy conversion process with block diagrams and identify the appropriate site for it.
CO 2	Explain the working of Nuclear power station.
CO 3	Describe the working of Diesel power station and Gas turbine power plant.
CO 4	Compare various economic aspects of different types of Tariffs.
CO 5	Classify various substations and describe working of its equipments.
CO 6	Measure earth resistance.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	Electromagnetics	Course code	23050404
Course type:	Engineering Science	Course credit:	4

Course Outcome: -

CO 1	Understanding of electrostatic and magneto static fields.
CO 2	Apply mathematical knowledge of vector algebra to determine charge behavior in magnetic field and its applications.
CO 3	Describe the magnetic behavior of various materials in different electric condition and its applications.
CO 4	Solve problems analytically and numerically.
CO 5	Solve simple electrostatic boundary problems.
CO 6	Mathematically model a wide variety of electromagnetic behavior of waves.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	Analog Electronics	Course code	23050401
Course	Professional Core	Course credit:	4
type:	2.00		1.50

CO STATEMENTS

CO 1	Understand the different configurations of transistor and amplifiers.
CO 2	To test and design the circuits with op-amps and other electronics components for different applications.
CO 3	To test and design circuit using different ICs.
CO 4	Analyze performance of various circuits and analog devices

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	A C Machines	Course code	2 <mark>30</mark> 50402
Course	Professional Core	Course credit:	5
type:			

Course Outcome: -

CO 1	Explain the construction, working principle, performance and applications of Poly-phase induction motor.
CO 2	Perform experiments on above machines.
CO 3	Describe the need of these machines in the society
CO 4	Identify, formulate and solve the numerical problems related to above machines
CO 5	Single phase motors, synchronous generator (Alternator), synchronous motor and commutator motors.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	5
Course title:	Power Electronics	Course code	23050501
Course	Professional Core	Course credit:	4
Type:			

CO 1	Explain the construction and characteristics of Power semiconductor devices
CO 2	Analyze, operate and design ac-to-dc converters.
CO 3	Analyze, operate and design dc-to-dc converters.
CO 4	Apply the knowledge of power electronic converter for speed control of DC motors.
CO 5	Simulate power electronic converters and their control scheme.

	Bachelor of Engineering	Branch:	Electrical Engineering
Program:			
Year:	3 rd Year	Semester:	5
Course title:	Microprossessor &	Course code	23050505
0.1	Microcontroller	TIATAN	ALTIVIA
	archietechture & interfacing	7 77 0	THE RESIDENCE OF A
Course	Professional Core	Course credit:	5
type:	1 7 1 V 1		1 1 1

CO STATEMENTS

CO 1	Apply the concept of buses, microprocessor architecture and interrupts.
CO 2	Interface memory and I/O devices with 8 bit microprocessor/microcontroller
CO 3	Describe 8 bit microcontroller architecture-of MCS -51 family
CO 4	Program assembly language programming/ C programming of 8051
CO 5	Design microcontroller based small system

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	5
Course title:	Power System - I	Course code	23050502
Course type:	Professional Core	Course credit:	3

Course Outcome: -

CO 1	Understand Supply Systems. Explain mechanical design of transmission line
CO 2	Calculation of line parameters (Resistance, inductance and capacitance
CO 3	Describe underground cables
CO 4	Compare DC and AC distribution
CO 5	Explain the representation of different power system components and loading capability
	of a generator

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	5
Course title:	Elements of Electrical	Course code	23050504
	Design		
Course	Professional Core	Course credit:	3
type:			

CO 1	Explain the basic concepts related to design of electrical equipments.
CO 2	Design the starters, field regulators, small transformers and choke coils.
CO 3	Draw and explain the winding diagrams for AC and DC machines.
CO 4	Estimate the cost of wirings.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	5
Course title:	Control System Engineering	Course code	23050503
- 87	ARTIPA	INNO	VATION
Course	Professional core	Course credit:	5
type:	NT T X7 1		

CO STATEMENTS

CO 1	Apply systems theory to complex real world problems in order to obtain models that are expressed using differential equations, transfer functions, and state space equations.
CO 2	Predict system behavior based on the mathematical model of that system where the model may be expressed in time or frequency domain
CO 3	Analyze the behavior of closed loop systems using tools such as root locus, Routh Hurwitz, Bode, Nyquist, and Matlab
CO 4	Design controllers using classical PID methods, root locus methods, and frequency domain methods
CO 5	Devise a safe and effective method of investigating a system identification problem in the lab
CO-6	Write a report that effectively communicates the results of an analysis or design.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	6
Course title:	Utilization of electrical energy & traction	Course code	23050605
Course	Professional core	Course credit:	3
type:			

Course Outcome: -

CO 1	Understand the power electronics technology in efficient utilization of electrical power
CO 2	Apply power electronics technology in efficient utilization of electrical power
CO 3	Analyze effective utilization of Power Electronic Technologies in Electrical Traction.
CO 4	Evaluate the use of Power Electronic Technologies in various process control.
CO 5	Create lighting system using LED Technologies.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	6
Course title:	Industrial automation	Course code	23050601
Course type:	Professional core	Course credit:	4

CO 1	To identify potential areas for automation and justify need for automation
CO 2	To select suitable major control components required to automate a process or an activity
CO 3	To translate and simulate a real-time activity using modern tools and discuss the benefits of automation.
CO 4	To identify suitable automation hardware for the given application.
CO 5	To recommend appropriate modeling and simulation tool for the given manufacturing application

Progra <mark>m:</mark>	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	6
Course title:	High voltage Engineering	Course code	23050604
Course type:	Professional core	Course credit:	4

CO STATEMENTS

CO 1	Understand the basic generation and measurement of High voltage
CO 2	Analyze High current for testing purposes
CO 3	Comprehend Breakdown phenomenon in air, solid and liquid insulation
CO 4	Test high voltage electrical Equipment with various testing devices

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	6
Course title:	Electrical Power System - II	Course code	23050602
	4		
Course	Professional core	Course credit:	3
type:			

Course Outcome: -

COSTATEMENTS

CO 1	Analyze the performance of Short and Medium transmission line.
CO 2	Describe the symmetrical components and its applications.
CO 3	Analyze Symmetrical and Unsymmetrical faults in power systems.
CO 4	Describe transients in power systems.
CO 5	Describe corona effect

INDIA'S LIBST UNIVERSITY FOR STARTUP

	Bachelor of Engineering	Branch:	Electrical Engineering
Program:			
Year:	3 rd Year	Semester:	6
Course title:	Design of DC machine &	Course code	23050603
	Transformer		
Course	Professional core	Course credit:	4
type:		A.	

CO STATEMENTS

CO 1	Design the DC machine of given specifications.
CO 2	Design the transformers of given specifications.
CO 3	Prepare the detailed sketches of the designed machines.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	6
Course title:	Control of Electrical Drives	Course code	23050607
Course	Department Elective -I	Course credit:	4
type:			

Course Outcome: -

CO 1	Select a drive for a particular application based on power rating.
CO 2	Select a drive based on mechanical characteristics for a particular drive application.
CO 3	Operate and maintain solid state drives for speed control of DC and AC machines.
CO 4	Operate and maintain solid state drives for speed control of various special electrical machines.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	3 rd Year	Semester:	6
Course title:	Advance Microcontroller	Course code	23050606
Course	3 rd Year	Course credit:	4
type:			

CO 1	Understand how microcontroller and its peripherals function.
CO 2	Interface to external peripherals
CO 3	Program an embedded system in assembly and C
CO 4	Design, implement and test a single-processor embedded systems for real-time applications
CO 5	Optimizing embedded software for speed and size for industrial applications

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	7
Course title:	Switchgear & Protection	Course code	23050702
Course type:	Professional core	Course credit:	5

CO 1	Explain the purposes of protection, in relation to major types of apparatus, protection principle, dangers and criteria.
CO 2	Choose and justify a suitable protection system for a specified application.
CO 3	Analyze and compare specified protection systems
CO 4	Compare merits of various principles, relay hardware and interrupting devices.
CO 5	Compare the different type of circuit breakers performance based on which selection of circuit
	breaker can be made for a given application

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	7
Course title:	Interconnected Power	Course code	23050701
U	System	ERS	ITY
Course type:	Professional core	Course credit:	5

CO STATEMENTS

CO 1	Model modern power system network.
CO 2	Solve the problem of power flow through any power system network
CO 3	Find economical generation of power and rescheduling of power Solve swing equation
CO 4	Find the stability of a power system
CO 5	Find the variation in the frequency because of change in generation

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	7
Course title:	Design of AC Machines	Course code	23050703
Course	Professional core	Course credit:	4
type:		16	

Course Outcome: -

CO 1	Design the Induction machines of given specifications.
CO 2	Prepare the detailed sketches of the designed machine.
CO 3	Use computer for electrical machine design.
CO 4	Design the synchronous machines of given specifications.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	7
Course title:	Advanced Power Electronics	Course code	23050704
Course type:	Department Elective -II	Course credit:	4

CO STATEMENTS

CO 1	Evaluate different dc-dc voltage regulators.
CO 2	Simulate and analyze resonant converters.
CO 3	Select appropriate phase shifting converter for a multi-pulse converter.
CO 4	Evaluate various multi-level inverter configurations.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	7
Course title:	Industrial Instrumentation	Course code	23050705
Course type:	Department Elective -II	Course credit:	4

Course Outcome: -

CO 1	Select a transducer based on its operating characteristics for the required application.
CO 2	Check various available techniques available and select appropriate to obtain satisfactory task for the parameter to be measured.
CO 3	Know advantages and limitations of selected techniques.
CO 4	Interpret the measurement results and cause of any possible error.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	8
Course title:	Power System Planning &	Course code	23050801
	Design		
Course	Professional core	Course credit:	4
type:			

CO 1	Design transmission line (electrical and mechanical aspects)
CO 2	Design primary and secondary distribution.
CO 3	Selection of sizes and location of generating stations, substations.
CO 4	Explain the basic concepts of power system earthing and measurement of earthing resistance.
CO 5	Explain the basic concepts of insulation co-ordination.
CO 6	Explain the basic concepts of generation planning, transmission planning and distribution planning.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	8
Course title:	Power System Operation & Control	Course code	23050803
Course	Engineering Science	Course credit:	3
type:	ILS FIRST UNIX	ERSITY F	OR STARTUP

CO STATEMENTS

CO 1	Understand the techniques to control power flows, frequency andvoltage.
CO 2	Explore the significance of power systemrestructuring.
CO 3	Perform system state estimation and explore itsimportance.
CO 4	Learn the power system security and its application as a systemoperator.
CO 5	Carry out load forecasting using availablemethods.

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	8
Course title:	Energy Consservation &	Course code	23050804
	Audit		
Course	Department Elective - III	Course credit:	4
type:			

Course Outcome: -

CO 1	Identify and assess the energy conservation/saving opportunities in different electric system
CO 2	Identify and assess energy conservation opportunities in thermal system
CO 3	Demonstrate skills required for energy audit and management.
CO 4	Prepare energy flow diagrams and energy audit report
CO 5	Suggest cost-effective measures towards improving energy efficient and energy conservation

Program:	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	8
Course title:	Testing & Commissioning of Electrical Equipments	Course code	23050802
Course	Professional Core	Course credit:	4
type:			

CO STATEMENTS

CO 1	Preparation of maintenance schedule of different equipment and machines.
CO 2	Trouble shooting chart for various electrical equipment, machines and domestic appliances.
CO 3	Procedure of different types of earthing for different types of electrical installations.
CO 4	Familiar about electrical safety regulations and rules during maintenance.

Progra <mark>m:</mark>	Bachelor of Engineering	Branch:	Electrical Engineering
Year:	4 th Year	Semester:	8
Course title:	Po <mark>we</mark> r Q <mark>ua</mark> lity Manageme <mark>nt</mark>	Course code	2 305 0 805
Course	Department Elective - III	Course credit:	4
type:		TTITIO	ATTITUTE TO THE

UNIVERSITY

CO STATEMENTS

CO 1	Understand the major power quality <mark>problems.</mark>
CO 2	Use equipment that are required to measure the quality of power
CO 3	Apply and analyze/compare techniques available to mitigate power quality problems.
CO 4	To observe & Analyze Total Harmonic distortion using FFT Analysis.

NAME OF THESE DISCUSSION FOR STARTUP

SWARRNIM STARTUP AND INNOVATION UNIVERSITY SWARRNIM INSTITUTE OF TECHNOLOGY

PROGRAM NAME: - M.TECH IN ELECTRICAL POWER SYSTEM ENGINEERING
ACADEMIC YEAR 2023 - 2024

COURSE OUT COME OF M.TECH ELECTRICAL POWER SYSTEM ENGINEERING
SEMESTER I – IV

COURSE OUT COME OF M.TECH ELECTRICAL POWER SYSTEM ENGINEERING - SEM - I

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	1
Course title:	Applied linear algebra	Course code	24010101
Course type:	Basic Science	Course	6
		credit:	

Sr.No	CO Statement
CO 1	Define matrices, linear equations, and determinants, recall basic vector algebra.
CO 2	Understand basic concepts such as vector spaces, linear dependence /independence of vectors,
	basis and linear maps.
CO 3	Analyze and calculate eigen values, eigen vectors, rank nullity of a matrix / linear map.
CO 4	Pro ve theorems, apply Gram-Schmidt process on inner product spaces, diagonalize special
	matrices.
CO 5	Apply concepts of linear algebra to various applications including real life problems.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	1
Course title:	Electrical Drives	Course code	24010105
Course type:	Major Elective - I	Course	6
		credit:	

Sr.No	CO Statement		
CO 1	Ability to analyze the steady state models of DC and AC motors		
CO 2	Ability to evaluate the different speed control methods on different performance		
	parameters		
CO 3	Ability to describe and operate the DC and AC machines in different quadrants as		
	per load requirements		
CO 4	Ability to determine the components of electrical drive for the required applications		
CO 5	Ability to select and design the power electronics converter based control logic for		
	speed control of DC and AC motors		

STARTUP & INNOVATION UNIVERSITY

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Sem <mark>este</mark> r:	1
Course title:	Instrumentation	Course code	24010106
Course type:	Major Elective - I	Course credit:	6

Sr.No	CO Statement		
CO 1	Use A/D and D/A convertors and Data Acquisition System.		
CO 2	Carry out interfacing using USB ports and different networks medium.		
CO 3	Understand the different communication protocols.		
CO 4	Carry out the industrial application.		

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	1
Course title:	Advanced power system protection & switchgear	Course code	24010104
Course type:	Major Elective - I	Course	6
	The state of the s	credit:	1

Sr.No	CO Statement
CO 1	Analyze the tripping characteristics of various relays and its applications.
CO 2	Design inductors and transformers for power electronic converters.
CO 3	To operate various static relays, set their parameters and also to confirm its operations.
CO 4	To operate various Numeric relays, set their parameters and also to confirm its operations.

STARTUP & INNOVATION UNIVERSITY

INDIA'S FIBST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	1
Course title:	Computer methods in	Course code	24010103
	power system analysis		
Course type:	Professional core	Course credit:	6

Sr.No	CO Statement		
CO 1	Recent techniques and computer application for modeling of practical and large		
	interconnected powe <mark>r system networks using programming language</mark> s.		
CO 2	Recent methodologies for simulation and analysis of power system networks like real and		
	reactive power flows and optimal scheduling.		
CO 3	Effect of outage of any important component of power system on the operation and		
	reliability of power systems.		
CO 4	Algorithm required to find out parameters for monitoring and control of power system in		
	real time from actual measurement data.		
CO 5	Computer Algorithms used to solve algebra-differential pertaining to power system to		
	assess the stability performance of power systems.		

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	1
Course title:	Power Electronics	Course	24010102
		code	
Course type:	Professional core	Course	6
	Dec.	credit:	

Sr.No	CO Statement
CO 1	Analyze the characteristics of Power electronics devices and to determine the suitable
	device for a particular application.
CO 2	Analyze, design and operate DC-DC converters, phase controlled converters, inverters
	and AC-AC converters
CO 3	Design inductors and transformers for power electronic converters
CO 4	Design of driver, protection and control circuits for power electronic devices
CO 5	Design the schemes for reduction or elimination of harmonics.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	1
Course title:	Research Skills	Course code	24010001
Course	Professional core	Course	2
type:		credit:	40

Sr.No	CO Statement	
CO 1	Conduct a quality literature review and find the research gap	
CO 2	Identify an original and relevant problem and identify methods to find its solution	
CO 3	Validate the model	
CO 4	Present and defend the solution obtained in an effective manner in written or spoken form.	

COURSE OUT COME OF M.TECH ELECTRICAL POWER SYSTEM ENGINEERING - SEM - II

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Electrical Machine	Course code	24010202
	Modeling And Analysis		
Course type:	Professional core	Course	6
		credit:	

Sr.No	CO Statement		
CO 1	Understanding of the principles of operation for various electrical machines		
CO 2	Construction, characteristics, and performance of these machines.		
CO 3	Understand and apply different modeling approaches like dynamic, steady-state, and		
	transient analyses.		
CO 4	Understand the impact of different operating conditions and parameters on machine		
	performance.		

Program:	Master of	Branch:	Electrical Engineering
	Engineering		
Year:	1 st Year	Semester:	2
Course title:	Modern control	C <mark>ourse</mark> code	24010201
	system		
Course type:	Professional core	Course credit:	5

Sr.No	CO Statement
CO 1	Understand how the state space system representation provides an internal description of
	the system including possible internal oscillations or instabilities.
CO 2	Design state observers.
CO 3	Place closed loop poles at desirable locations
CO 4	Derive the describing function for different types of non-linearities and then do the stability
	analysis
CO 5	Understand how the system design minimizes or maximizes the selected performance index

STARTUP & INNOVATION UNIVERSITY

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Economics Of Energy	Course code	24010215
	Generation & Supply		
Course type:	Inter department	Course	6
	Elective	credit:	F-4737

Sr.No	CO Statement
CO 1	Understand the concepts of energy management.
CO 2	Forecast energy demand.
CO 3	Forecast energy demand 3. Analyze economics of energy supply

Program:	Master of Engineering	Branch:	EE
Year:	1 st Year	Semester:	2
Course	Digital Signal Processing For	Course code	24010214
title:	Power Electronics		
Course	Inter department Elective	Course credit:	6
type:			

Sr.No	CO Statement
CO 1	Understand the basics of power diodes, power bipolar junction transistors, metal oxide
	semiconductior field effect transistor, insulated gate bipolar transistors.
CO 2	Understanding of various power converter topologies like buck, boost, buck boost, cuk, half
	bridge and full bridge.
CO 3	Students will be able to generate pulse width modulated output using TMS320F2407/28335
	high performance

Program:	Master of	Branch:	Electrical Engineering
	Engineering		
Year:	1 st Year	Sem <mark>ester:</mark>	2
Course title:	Power System	Course code	24010208
	Transients		
Course type:	Major Elective III	Course credit:	5

Sr.No	CO Statement
CO 1	Understand how the various types of Transients in the system produced and provide an internal description of the system including possible Transients in the systems
CO 2	Understand Lightning and effect on power systems.
CO 3	Understand Modelling of transmission line for travelling waves.
CO 4	Understand the protection of power system against transient over voltages.
CO 5	Design ideas of Insulations under the presence of transients.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Artificial Intelligent	Course	24010209
	Application To Power System	code	
Course type:	Major Elective III	Course	5
		credit:	

Sr.No	CO Statement
CO 1	Understand how the soft computing techniques can be used for solving the problems of power systems operation and control.
CO 2	Solve problem of Optimization in power systems
CO 3	Design of ANN based systems for function approximation used in load forecasting.
CO 4	Design of Fuzzy based systems for load frequency control in power systems
CO 5	Solve problem of Optimization in power systems.

INDIA'S FIBST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Digital Control System	Course code	24010206
Course type:	Major Elective II	Course credit:	6

Sr.No	CO Statement
CO 1	Do the z-transform analysis for open and closed loop systems.
CO 2	Design digital control system.
CO 3	Do stability analysis of discrete time system.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Advanced Power Converters	Course code	24010205
Course type:	Major Elective II	Course credit:	6

Sr.No	CO Statement
CO 1	Simulate and design resonant converters.
CO 2	Select and design the appropriate phase shifting converter for a multi-pulse converter.
CO 3	Evaluate various multi-level inverter configurations and design control schemes for them
CO 4	Apply the knowledge of power electronic converters in the area of Power Systems, Renewable Energy Sources and other industrial applications.

STARTUP & INNOVATION UNIVERSITY

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	FACTS Devices	Course code	24010203
Course type:	Major Elective II	Course	6
	A	cr <mark>edit:</mark>	1 24

Sr.No	CO Statement
CO 1	Analyze reactive power requirement and management.
CO 2	Assess and evaluate various compensators
CO 3	Simulate and design compensators
CO 4	Analyze various control schemes in HVDC system.

INTO A PARTIES OF A DATABLE RESIDENCE STARTOR

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Power System Management & Optimization	Course code	24010204
Course type:	Major Elective II	Course credit:	6

Sr.No	CO Statement		
CO 1	Learn the unified and exact mathematical basis as well as the general principles of		
	optimization techniques.		
CO 2	Understand detailed theoretical and practical aspects of application of optimization		
	techniques		
CO 3	Formulate deterministic mathematical programs and solutions for Power System applications		
CO 4	Determine the operating condition of the power systems, in which optimization of some		
	system variable are obtained		

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Robotics & Automation	Cou <mark>rse co</mark> de	24010213
Course type:	Major Elective III	Course	5
		credit:	

Sr.No	CO Statement		
CO 1	Understand various terminology and co-ordinate frame structures.		
CO 2	Design mapping from one space to another and coordinate transformation		
CO 3	Understand modeling of both forward and inverse kinematics.		
CO 4	Carry out the dynamic modeling of manipulator to find the forces and torques to cause the		
	motion of manipulator.		
CO 5	Design trajectory planning through specified points or paths.		

NDIA'S FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course	Adaptive Control	Course code	24010212
title:			
Course	Major Elective III	Course	5
type:		cr <mark>edit:</mark>	

Sr.No	CO Mapping
CO 1	The general principles of adaptive control and learning.
CO 2	The System identification (i.e. learning a model from empirical data
CO 3	Analyze the behaviour of adaptive control schemes such as model reference adaptive control and self-tuning regulators
CO 4	Issues of convergence, stability, and robustness
CO 5	Various analytical methods i.e. Methods from averaging theory and singular perturbation.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Industrial Electronics And	Course code	24010211
	Instrumentation		70.5
Course type:	Major Elective III	Course credit:	5

Sr.No	CO Statement	
CO 1	Demonstrate concepts of different transducers and use them in industrial applications.	
CO 2	Design measurement and signal conditioning circuits for industrial applications	
CO 3	Design wiring schemes for industrial control.	
CO 4	To take corrective measures for EMI	

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	1 st Year	Semester:	2
Course title:	Non-Linear Control System	Course code	24010207
Course type:	Major Elective III	Course	6
	- A	credit:	

Sr.No	CO Statement		
CO 1	Fundamentals of nonlinear systems analysis and control.		
CO 2	Analysis of nonlinear systems, driven by a number of real-world examples, and some preliminary mathematical background.		
CO 3	Stability through Lyapunov techniques and input-output analysis.		
CO 4	Control of nonlinear systems, through feedback linearization, sliding mode control, and gain scheduling.		

COURSE OUT COME OF M.TECH ELECTRICAL POWER SYSTEM ENGINEERING - SEM - III

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	Power System Dynamics and	Course code	24010302
	Control		
Course type:	Major Elective – IV	Course credit:	6

Sr.No	CO Statement
CO 1	Explain the dynamic models of power system components.
CO 2	Select the appropriate model depending on the analysis to be done.
CO 3	Prepare the detailed simulations for single machine and multi-machine systems
CO 4	Analyze the performance of the system with small signal analysis.
CO 5	Explain the controllers and their significance in power system

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	Power Quality Issues And Their	Course code	24010301
	Mitigation Techniques In Power	DCI	
	Systems	LC U	LX
Course type:	Major Elective – IV	Course credit:	6

Sr.No	CO Statement
CO 1	Comprehend concept of Power Quality & it's issues for various electrical systems .
CO 2	Understand effects of power quality on electrical apparatus
CO 3	Know different power quality improvement.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Yea <mark>r</mark>	Semester:	3
Course title:	Semina <mark>r - I</mark>	Course code	2400001
Course type:	Skill	Course credit:	4

Sr No.	CO Statement	
CO 1	Establish motivation for any topic of interest and develop a thought process for technical presentation	
CO 2	Organize a detailed literature survey and build a document with respect to technical publications.	
CO 3	Analysis and comprehension of proof-of-concept and related data.	
CO 4	Effective presentation and improve soft skills.	
CO 5	Make use of new and recent technology (e.g. Latex) for creating technical reports	

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	Internal Review	Course code	24000002
Course type:	Dissertation	Course credit:	2

Sr No.	CO Statement
CO 1	Understand the ch <mark>osen research topic and its releva</mark> nt challenges.
CO 2	Systematically identify relevant theoretical concepts and appropriate quality literature
	from reputed recent journal publications to validate the problem statement.
CO 3	Do a comparative analysis of the existing solutions for the chosen research problem and
	identify the further scope of work
CO 4	Evaluate the comparative analysis with relevant quantitative and qualitative performance
	parameters using problem-specific datasets.
CO 5	Design a hypothesis with significant technicality using the appropriate
	algorithm/methodology to solve the chosen research problem.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	3
Course title:	Dissertation Phase - I	Course code	24000003
Course type:	Dissertation	Course credit:	10

Sr No.	CO Statement
CO 1	Design a research investigation that incorporates appropriate theoretical approaches, conceptual
	models, and a review of the existing literature.
CO 2	Learn to structure a discussion coherently and convincingly by synthesizing the material in
	the context of the research questions.
CO 3	Get good literature/experimental data collection for the implantation/experimentation in
	Dissertation Phase-II.

STARTUP & INNOVATION UNIVERSITY

COURSE OUT COME OF M.TECH ELECTRICAL POWER SYSTEM ENGINEERING - SEM - IV

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	Power System Restructuring	Course code	24010402
Course type:	Major Elective – IV	Course credit:	4

Sr No.	CO Statement
CO 1	This course is intended to provide a comprehensive treatment towards understanding of the new dimensions associated with the power systems.
CO 2	The course will bring out the differences between the conventional power system operation and the restructured one. the course will prepare a background with fundamentals of microeconomics
CO 3	In this course the design of power markets and market architectural aspects, the changes in operational aspects with new operational challenges like congestion management and ancillary service management will be elaborated.
CO 4	One of the outcome of the course also efficient pricing of transmission network usage operation and Genco bidding strategies and market power with mitigation techniques.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	Smart Grid Technology and Applications	Course code	24010401
Course type:	Major Elective – IV	Course credit:	4

Sr. No	CO Statement
CO 1	Know what a function of smart grid is, what is the futuristic grid
CO 2	Issues while implementing the smart grid approach.
CO 3	Concept of Microgrid and distributed generation.
CO 4	Need of communication technology in smart grid.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	Seminar - II	Course code	2400006
Course type:	Skill	Course credit:	4

Sr No.	CO Statement
CO 1	Establish motivation for any topic of interest and develop a thought process for technical presentation
CO 2	Organize a detailed literature survey and build a document with respect to technical publications.
CO 3	Analysis and comprehension of proof-of-concept and related data.
CO 4	Effective presentation and improve soft skills.
CO 5	Make use of new and recent technology (e.g. Latex) for creating technical reports

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	External Mid Sem Review	Course code	24000004
Course type:	Dissertation	Course credit:	10

Sr No.	CO Statement
CO 1	Systematically identify relevant theoretical concepts and appropriate quality literature from reputed recent journal publications to validate the problem statement.
CO 2	Do a comparative analysis of the existing solutions for the chosen research problem and identify the further scope of work.
CO 3	Evaluate the comparative analysis with relevant quantitative and qualitative performance parameters using problem-specific datasets.
CO 4	Design a hypothesis with significant technicality using the appropriate algorithm/methodology to solve the chosen research problem.

Program:	Master of Engineering	Branch:	Electrical Engineering
Year:	2 nd Year	Semester:	4
Course title:	Dissertation Phase - II	Course code	2400005
Course type:	Dissertation	Course credit:	12

CO Statement
Design a research investigation that incorporates appropriate theoretical approaches, conceptual models, and
a review of the existing literature.
Learn to structure a discussion coherently and convincingly by synthesizing the material in the
context of the research questions.
Get good literature/experimental data collection for the implantation/experimentation in
Dissertation Phase-II.

SWARRNIM INSTITUTE OF TECHNOLOGY

DEPARTMENT: INFORMATION TECHNOLOGY

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Maths-I	Course code	23000001
Course type:	Engineering Science	Course credit:	5

CO 1	Analyze and manipulate infinite sequences and series.
CO 2	Evaluate limits involving indeterminate forms.
CO 3	Understand and apply techniques for improper integrals.
CO 4	Analyze functions of several variables and solve optimization problems.
CO 5	Solve systems of linear equations using matrices and determinants.
CO 6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.

At Post Bhoyan Rathod, Nr. ONGC WSS, Opp. IFFCO, Adalaj-Kalol Highway, Gandhinagar, Gujar

Bhoyan Rathod

Program:	Bachelor of Engineering	Branch:	CE
Year:	1 st Year	Semester:	1
Course title:	Fundamentals of Computer	Course code	23000004
	Programming	radio.	
Course type:	Engineering Science	Course credit:	4

CO 1	Apply fundamental principles of problem solving in software engineering.
CO 2	Apply basic programming principles using C language.
CO 3	Apply basic C program structure in software development
CO 4	Prepare graduates for professional careers in roles including, but not limited to, the following: computer programmer, software engineer, software systems designer, software applications developer, technical software project lead, computer systems analyst, computer systems programmer, software applications tester and maintainer.
CO 5	To prepare graduates with the knowledge and skills to do advanced studies and research in computer science and related engineering and scientific disciplines
CO 6	To equip graduates with the communication skills, both oral and written, to become an effective team-oriented problem solver as well as an effective communicator with nontechnical stakeholders in computer and software systems development, maintenance and administration.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	1
Course title:	Elements of Electrical Engineering	Course code	23000012
Course type:	Engineering Science	Course credit:	5

CO 1	Define electrical current, potential difference, power and
1 9	energy, sources of electrical energy, resistance and its
	behavior with temperature.
CO 2	Understand the different types of wires, cables, connectors & Damp;
	switches used for wiring Different types of domestic and
	industrial wiring.
CO 3	Apply the concepts of KVL/KCL and network theorems in solving
	DC circuits.
CO 4	Analyze the steady state behavior of single phase and three phase
	AC electrical circuits.
CO 5	Compare various protective devices of working principle,
	usage and construction such as fuse, MCB, ELCB & amp; Relays.
CO 6	Design and development of varies Electrical Wiring and
	electronics miniproctes.
100	A DITTID X- ININIONATIONI

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	1
Course title:	Elements of Mechanical Engineering	Course code	23000003
Course type:	Engineering Science	Course credit:	6

CO 1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO 2	Make calculations for commonly used working fluids i.e. ideal gases and steam.
CO 3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO 4	Discuss working and applications of steam boilers and various energy conversion systems.
CO 5	Discuss various power transmission elements and properties of various engineering materials with their applications.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	1
Course title:	Environmental Studies	Course code	23000006
Course type:	Engineering Science	Course credit:	2

CO 1	Describe natural resources, importance of ecosystem and conservation of biodiversity with respect to multiple disciplines.
CO 2	Explain causes, effects, solutions for various pollution problems and its minimization strategies.
CO 3	Differentiate between requirements of laws and regulations for environmental conservation and applicability of legislations in society and industries.
CO 4	Discuss environmental ethics and their implementation for betterment of environment and human life.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	1
Course title:	Orientation Program in Startup and Entrepreneurship	Course code	12300001
Course type:	Engineering Science	Course credit:	3

CO 1	Apply the basic principles of entrepreneurship
CO 2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and various entrepreneurial opportunities.
CO 3	Understanding various individual attributes of entrepreneurial personality traits, entrepreneurial characteristics, behavioural attributes and importance of creativity and innovation.
CO 4	Develop an understanding of best techniques for idea generation and opportunities exploration.

S TIPSET THE INTERSTED FOR STARTING

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	1
Course title:	Workshop	Course code	23000029
Course type:	Engineering Science	Course credit:	4

CO 1	Understand applications of hand tools and power tools and operations of machine tools.
CO 2	Understand the operations of machine tools.
CO 3	Select the appropriate tools required for specific operation.
CO 4	Comprehend the safety measures required to be taken while using the tools.
CO 5	Prepare Fitting, Carpentry, Plumbing, Welding, and Tin-smithy Jobs.

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	1
Course title:	Electronics Workshop	Course code	23000002
Course type:	Engineering Science	Course credit:	4

CO 1	Measure different electrical quantities.
CO 2	Understand the requirements and operation of safety devices
CO 3	Select the appropriate tools and components required for the specific operation
CO 4	Wire and trouble shoot of household appliances.

INDUA'S FIRST UNIVERSITY FOR STARTUP

SEMESTER:-2

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Maths-II	Course code	23000010
Course type:	Engineering Science	Course credit:	5

CO 1	Understand vectors in $\mathbb{R}^n \times \mathbb{R}^n$ and operations involving linear combinations.
CO 2	Identify subspaces and determine basis and dimension and Perform coordinate transformations and understand the change of basis.
CO 3	Understand linear transformations and their properties and Represent linear transformations with matrices and explore the concept of similarity.
CO 4	Apply inner product spaces to least squares approximation and diagonalization of symmetric matrices and Explore applications of quadratic forms and optimization.
CO 5	Apply double and triple integrals over different regions and Utilize Fubini's theorem and change of variables in multiple integrals.
CO 6	Apply integration techniques to calculate volumes of various solids.

IVERSITY

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Engineering Physics	Course code	23000005
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic concepts and classification of sound.
CO 2	Analyze applications of superconductors.
CO 3	Understand the fundamentals of laser radiation.
CO 4	Evaluate the applications of optical fibers.
CO 5	Apply dielectric materials in capacitors and transformers.
CO 6	Explore applications of magnetic materials.
CO 7	Explain the synthesis and applications of nonmaterial's.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Communication Skills	Course code	2300008
Course type:	Engineering Science	Course credit:	3

CO 1	To improve students' communicative and linguistic approach in English.
CO 2	To provide an ice-breaking technique using LSRW skills and soft skills
CO 3	To learn techniques to improve overall communication abilities and effective use of writing in the field of advertising and public relations.
CO 4	Improve communication skills through practicing debate, discussion and appearing in interview.
CO 5	Use of ethical consideration in order to develop good etiquettes both in online and offline communication.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Basic Electronics	Course code	23000009
Course type:	Engineering Science	Course credit:	5

To study basics of semiconductor & amp; devices and their applications in different
areas.
Demonstrate the operating principle and output characteristics of pn junction diodes,
zener diode, Varactor diode, BJT, rectifiers and different diode circuits
Compute and characterization of different biasing techniques to operate transistor
FET, MOSFET and operational amplifier in different modes
To implementation of basic digital gates using diode and basic family of logic Families

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics	Course code	23000011
Course type:	Engineering Science	Course credit:	6

CO 1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO 2	Understanding the object through orthographic projections.
CO 3	Construct basic and intermediate geometry and application of engineering curves.
CO 4	Enhance visualization skills for developing new products.
CO 5	Develop new products through technical communication skill in the form of communicative drawings.
CO 6	Develop the theory of orthographic projection and views.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Elements of Civil Engineering	Course code	23000015
Course type:	Engineering Science	Course credit:	6

CO 1	Carry out simple land survey to prepare maps with existing details.
CO 2	Find out area of irregular shaped plane figures.
CO 3	Understand building plan elevation and section.
CO 4	Get acquainted with construction materials.
CO 5	Get acquainted with hydrological cycle and hydraulic structures.
CO 6	Get acquainted with mass transportation systems.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	BASIC PROGRAM IN	Course code	12300002
	ENTREPRENURESHIP		
Course type:	Engineering Science	Course credit:	3

CO 1	Develop an understanding of best techniques for idea generation, opportunities exploration, and market research.
CO 2	Check technical, market, financial and other types of Feasibility of their business idea
CO 3	Develop business model to describe the rationale of how an organization creates, delivers, and captures value
CO 4	Conduct the customer's survey to know the need of their business idea.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Chemistry	Course code	23020216
Course type:	Engineering Science	Course credit:	4

CO 1	To relate periodic properties such as ionization potential, oxidation states and electro negativity.
CO 2	To analyze microscopic chemistry in terms of atomic and molecular orbital's and inter molecular forces.
CO 3	To describe the importance and relevance of chemistry in our everyday life
CO 4	To select the appropriate chemical material and utilization of it.
CO 5	To interpret the methods of science as a logical means of problem solving.
CO 6	To distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Personality Development	Course code	24190203
Course type:	Engineering Science	Course credit:	3

CO 1	To provide an icebreaking technique using LSRW skills and soft skills
CO 2	To learn techniques to improve overall communication abilities and effective use of writing in the field of advertising and public relations.
CO 3	Improve communication skills through practicing debate, discussion and appearing in interview.
CO 4	Use of ethical consideration in order to develop good etiquettes both in online and offline communication.

the Indian Harriston common Consumor

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Web Technology	Course code	24190204
Course type:	Engineering Science	Course credit:	4

CO 1	Write and debug JavaScript to enhance user interactivity and improve the user experience.
CO 2	Understand server-side programming concepts using languages such as Node.js, Python, or PHP.
CO 3	Create responsive and visually appealing web pages using HTML, CSS, and JavaScript.
CO 4	Explain the basic principles of how the web works, including HTTP, URLs, and web servers.
CO 5	Use Git for version control, including branching, merging, and collaboration workflows.

The Lange Harrison was Creating

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Introduction to Cloud	Course code	24190205
	Technology	141	
Course type:	Engineering Science	Course credit:	3

CO 1	Compare major cloud service providers (e.g., AWS, Azure, Google Cloud) and
-	their off <mark>erings.</mark>
CO 2	Recognize key security principles and practices in cloud environments,
	including data protection, compliance, and identity management.
CO 3	Set up and manage basic cloud services, such as virtual machines, storage
	solutions, and databases.
CO 4	Use cloud management and monitoring tools to oversee cloud resources,
	optimize performance, and manage costs.
CO 5	Identify emerging trends in cloud technology, such as serverless computing,
	containerization, and edge computing.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics &	Course code	24190206
	Design		
Course type:	Engineering Science	Course credit:	4

CO 1	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.
CO 2	Apply geometric construction methods to create and analyze shapes, dimensions, and spatial relationships.
CO 3	Construct and visualize 3D models using CAD software, demonstrating an understanding of spatial relationships and design principles.
CO 4	Analyze and evaluate design concepts for functionality, manufacturability, and aesthetics, using appropriate tools and techniques.
CO 5	Work collaboratively in teams to develop a design project from concept through to presentation, demonstrating project management and teamwork skills.
CO 6	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Mentoring and Counselling	Course code	24190207
Course type:	Engineering Science	Course credit:	

CO 1	Explain key theories and principles of mentoring and counseling, including various approaches and methodologies.
CO 2	Demonstrate active listening, empathy, and nonverbal communication techniques essential for building rapport with mentees or clients.
CO 3	Foster an inclusive and supportive environment that encourages open communication and trust between the mentor/counselor and the mentee/client.
CO 4	Engage in self-reflection to assess personal strengths and areas for growth as a mentor or counselor, fostering continuous professional development.

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	1 st Year	Semester:	2
Course title:	Open Project / MOOC	Course code	24190208
	- A	Total Control	
Course type:	Engineering Science	Course credit:	

CO 1	Identify and articulate the goals and objectives of their open project, ensuring
	alignment with personal or community needs.
CO 2	Utilize project management tools and techniques to organize, monitor, and
	evaluate project progress effectively.
CO 3	Identify, evaluate, and utilize open educational resources (OER) to enhance
	learning and project outcomes.
CO 4	Engage in self-reflection to assess personal growth, learning experiences, and
	challenges faced during the project.

ISSUE 'S Trees HELVERSTTY FOR STARTIN

Semester: 3

Program:	Bachelor of Engineering	Branch:	IT
Year:	2 nd Year	Semester:	3
Course title:	Maths - III	Course code	2300015
Course type:	Engineering ScienIT	Course credit:	5

CO 1	Apply Fourier series to analyze and represent periodic functions.
CO 2	Apply Laplace transforms to solve differential equations and system problems.
CO 3	Apply methods such as integrating factor, Bernoulli equations, and linear differential equations.
CO 4	Apply series solutions to solve differential equations and analyze the convergence and divergence of series solutions.
CO 5	Apply the method of separation of variables to solve PDEs to analyze solutions in cylindrical and spherical polar coordinates.

Program:	Bachelor of Engineering	Branch:	IT
Year:	2 nd Year	Semester:	3
Course title:	Digital Electronics	Course code	23070301
Course type:	Engineering ScienIT	Course credit:	5

CO 1	Have a thorough understanding of the fundamental conlTpts and techniques used in
CO 2	Apply on Gate of digital electronics.
CO 3	To understand and examine the structure of various number systems and its
CO 4	Application in digital design.
CO 5	The ability to understand, analyze and design various combinational and sequential

Program:	Bachelor of Engineering	Branch:	IT
Year:	2 nd Year	Semester:	3
Course title:	Data Structure And Algorithm	Course code	23040302
Course type:	Engineering Science	Course credit:	5

CO 1	Learn the basic types for data structure, implementation and application.
CO 2	Know the strength and weakness of different data structures.
CO 3	Use the appropriate data structure in context of solution of given problem
CO 4	Develop programming skills which require solving given problem.
CO 5	Learn the data structure, implementation and application.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	2 nd Year	Semester:	3
Course title:	Database Management System	Course code	23040301
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic conlTpts of database management systems (L2)
CO 2	Apply SQL to find solutions to a broad range of queries (L3).
CO 3	Apply normalization techniques to improve database design (L3)
CO 4	Analyze a given database application slTnario to use ER model
CO 5	ConlTptual design of the database

SIDDA'S PERSON LENINGERS PLY KOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	2 nd Year	Semester:	3
Course title:	Computer Network	Course code	23040303
Course type:	Engineering Science	Course credit:	4

CO 1	Understand Basics of Computer Networks and different
CO 2	Transmission Media.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Computer network internet effectively.
CO 5	Understand various protocol layers and inner operations.

INDUC'S PERSON UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	2 Year	Semester:	4
Course title:	Operating System	Course code	23040401
Course type:	Engineering Science	Course Credit	4

CO 1	Describe the basics of the operating systems, mechanisms of OS to handle prolTsses, threads, and their communication.
CO 2	Describe the basics of the operating systems, mechanisms of OS to handle proITsses, threads, and th communication.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Discuss the storage management policies with respect to different storage management
	technologies
CO 5	Analyze the memory management and its allocation policies

Program:	Bachelor of Engineering	Branch:	IT
Year:	2Year	Semester:	4
Course title:	Object Oriented Programming with C++	Course code	23040402
Course type:	Engineering ScienIT	Course Credit	5

CO 1	Codes basic progra <mark>ms in Java programming language.</mark>
CO 2	Prints to the screen in Java language.
CO 3	Makes relational operations in Java.
CO 4	Constructs loops in Java.
CO 5	Defines arrays in Java and uses them.

Program:	Bachelor of Engineering	Branch:	IT
Year:	2Year	Semester:	4
Course title:	System Software	Course code	23040403
Course type:	Engineering Science	Course Credit	4

CO 1	To understand the relationship between system software and machine
CO 2	To understand architecture.
CO 3	To understand the prolTssing of an HLL program for execution on a computer.
CO 4	To understand the prolTss of scanning and parsing.
CO 5	To know the design and implementation of assemblers, macro prolTssor, linker

NIVERSITY

Program:	Bachelor of Engineering	Branch:	IT
Year:	2 Year	Semester:	4
Course title:	Computer Organization and MicroProcessor	Course code	23070401
Course type:	Engineering Science	Course Credit	4

CO 1	To know the background of internal communication of computer
CO 2	To have better idea on how to write assemble language programs
CO 3	To be clear with memory management techniques
CO 4	To better with IO devilTs communication with prolTssor
CO 5	To notilT how to perform computer arithmetic operations

INDUSTRIBUTE UNIVERSITY FOR STARTUP

Semester: 5

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	5
Course title:	Object Oriented Programming with JAVA	Course code	23040501
Course type:	Engineering Science	Course Credit	6

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

NDLAS FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	5
Course title:	Computer Graphics and Visualization	Course code	23040506
Course type:	Engineering Science	Course Credit	4

CO 1	Understand the basics of computer graphics, different
CO 2	Graphics systems and applications of computer graphics.
CO 3	Discuss various algorithms for scan conversion and
CO 4	Filling of basic objects and their comparative analysis.
CO 5	Use of geometric transformations on graphics objects

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	5
Course title:	Information Network & Cyber Security	Course code	23040503
Course type:	Engineering Science	Course Credit	4

CO 1	Identify some of the factors driving the need for network security.
CO 2	Identify and classify particular examples of attacks.
CO 3	Define the terms vulnerability, threat and attack.
CO 4	Identify physical points of vulnerability in simple networks.
CO 5	Identify the need for network security.

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	5
Course title:	IT Industry Management with ERP	Course code	23080501
Course type:	Engineering Science	Course Credit	3

CO 1	To provide a contemporary and forward-looking on the theory and practice of
CO 2	Enterprise Resource Planning Technology.
CO 3	To focus on a strong emphasis upon practice of theory in Applications and Practical-
CO 4	To aim at preparing the students technological competitive and make them ready to
	self-upgrade with the higher technical skills.
CO 5	To train the students to develop the basic understanding of how ERP enriches the

Year:	3 Year	Semester:	5
Course title:	Image Processing	Course code	23040507
Course type:	Engineering Science	Course Credit	4

CO 1	To provide a contemporary and forward-looking on the theory and practice of
CO 2	Enterprise Resource Planning Technology.
CO 3	To focus on a strong emphasis upon practice of theory in Applications and Practical-
CO 4	To aim at preparing the students technological competitive and make them ready to
	self-upgrade with the higher technical skills.
CO 5	To train the students to develop the basic understanding of how ERP enriches the

IVERSITY

Semester 6

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	6
Course title:	Wireless Network	Course code	23040601
Course type:	Engineering Science	Course Credit	4

CO 1	Conversant with the latest 3G/4G and Wi-MAX networks and its architecture.
CO 2	Design and implement wireless network environment for any application using latest
CO 3	Wireless protocols and standards.
CO 4	Implement different type of applications for smart phones and mobile devilTs with
CO 5	latest network strategies

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	6
Course title:	Compiler Design	Course code	23040602
Course type:	Engineering Science	Course Credit	4

CO 1	Realize basics of compiler design and apply for real time applications.
CO 2	To introduce different translation languages
CO 3	To understand the importance of code optimization
CO 4	To know about compiler generation tools and techniques
CO 5	To learn working of compiler and non compiler applications

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	6
Course title:	Cloud Computing	Course code	23040603
Course type:	Engineering Science	Course Credit	4

CO 1	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came
	about, the characteristics, advantages and challenges brought about by the various models and
	services in cloud computing.
CO 2	Apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and
	cost.
CO 3	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and
	outline their role in managing infrastructure in cloud computing.
CO 4	Analyze various cloud programming models and apply them to solve problems on the cloud.
CO 5	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came
	about, the characteristics, advantages and challenges brought about by the various models and
	services in cloud computing.

STILL'S STREET STREET, FOR STARTISP

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	6
Course title:	Data Mining and Warehousing	Course code	23040604
Course type:	Engineering Science	Course Credit	4

CO 1	Be familiar with mathematical foundations of data mining tools
CO 2	Understand and implement classical models and algorithms in data warehouses and
CO 3	data mining discovered by association rule
CO 4	Characterize the kinds of patterns that can be discovered by association rule
CO 5	data mining, classification and clustering.

NUMA'S THEST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	IT
Year:	3 Year	Semester:	6
Course title:	Advance JAVA	Course code	23040606
Course type:	Engineering Science	Course Credit	5

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

Semester 7

Program:	Bachelor of Engineering	Branch:	IT
Year:	4 Year	Semester:	7
Course title:	Artificial Intelligence	Course code	23040701
Course type:	Engineering Science	Course Credit	5

CO 1	Develop mathematical thinking and problem solving skills associated with research and writing proofs.
CO 2	Get exposure to a wide variety of mathematical conITpts used in computer scienIT discipline like probability.
CO 3	Use Graph Theory for solving problems.
CO 4	Acquire basic knowledge of sampling and estimation.
CO 5	Understand basic concepts of hypothesis

Program:	Bachelor of Engineering	Branch:	IT
Year:	4 Year	Semester:	7
Course title:	Python Programming	Course code	23040702
Course type:	Engineering Science	Course Credit	5

CO 1	Create your first program in Python IDLE
CO 2	Implement OOPs conITpts in your programming
CO 3	Use Arrays, and Data structures
CO 4	Create an application with the support of graphics in Python
CO 5	Implement error handling

INDUC'S PERSON UNIVERSITY FOR STARTUP

Semester: 8

Program:	Bachelor of Engineering	Branch:	IT
Year:	4 Year	Semester:	8
Course title:	Programming with XML & JSON	Course code	23040802
Course type:	Engineering Science	Course Credit	6

CO 1	Students are able to develop a dynamic webpage by the use of java script and DHTML.
CO 2	Students will be able to write a well formed / valid XML document.
CO 3	Students will be able to connect a java program to a DBMS and perform insert, update.
CO 4	Delete operations on DBMS table.
CO 5	Students will be able to write a server side java application called Servlet to catch form data

SWARRNIM INSTITUTE OF TECHNOLOGY

Program Name: Bachelor of Technology in Mechanical Engineering

Semester: I

Subject Name: Maths-I Subject Code: 23000001 Course Outcomes (COs):

CO1	Analyze and manipulate infinite sequences and series.
CO2	Evaluate limits involving indeterminate forms.
CO3	Understand and apply techniques for improper integrals.
CO4	Analyze functions of several variables and solve optimization problems.
CO5	Solve systems of linear equations using matrices and determinants.
CO6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.

Subject Name: Fundamentals of Computer Programming Subject Code: 23000004

Course Outcomes (COs):

CO1	Apply fundamental principles of problem solving in software engineering.
CO2	Apply basic programming principles using C language.
CO3	Apply basic C program structure in software development
CO4	Prepare graduates for professional careers in roles including, but not limited to, the following: computer programmer, software engineer, software systems designer, software applications developer, technical software project lead, computer systems analyst, computer systems programmer, software applications tester and maintainer.
CO5	To prepare graduates with the knowledge and skills to do advanced studies and research in computer science and related engineering and scientific disciplines
CO6	To equip graduates with the communication skills, both oral and written, to become an effective team- oriented problem solver as well as an effective communicator with nontechnical stakeholders in computer and software systems development, maintenance and administration.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Subject Name: Elements of Electrical Engineering Subject Code: 23000012

Course Outcomes (COs):

CO1	Define electrical current, potential difference, power and energy, sources of electrical energy, resistance and
	its behavior with temperature.
CO2	Understand the different types of wires, cables, connectors & Different types of wiring Different types of
CO2	domestic and industrial wiring.
CO3	Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
CO4	Analyze the steady state behavior of single phase and three phase AC electrical circuits.
CO5	Compare various protective devices of working principle, usage and construction such as fuse,
	MCB, ELCB & amp; Relays.
CO6	Design and development of varies Electrical Wiring and electronics miniproctes.

Subject Name: Elements of Mechanical Engineering

Subject Code: 23000003 Course Outcomes (COs):

CO1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO2	Make calculations for commonly used working fluids i.e. ideal gases and steam.
CO3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO4	Discuss working and applications of steam boilers and various energy conversion systems.
CO5	Discuss various power transmission elements and properties of various engineering materials with their applications.

Subject Name: Environmental Studies

Subject code: 23000006

CO1	Describe natural resources, importance of ecosystem and conservation of biodiversity with respect to multiple disciplines.
CO2	Explain causes, effects, solutions for various pollution problems and its minimization strategies.
CO3	Differentiate between requirements of laws and regulations for environmental conservation and applicability of legislations in society and industries.
CO4	Discuss environmental ethics and their implementation for betterment of environment and human life.

Subject Name: Orientation Program in Startup and Entrepreneurship

Subject code: 12300001 Course outcome:

CO1	Apply the basic principles of entrepreneurship
CO2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and various entrepreneurial opportunities.
CO3	Understanding various individual attributes of entrepreneurial personality traits, entrepreneurial characteristics, behavioural attributes and importance of creativity and innovation.
CO4	Develop an understanding of best techniques for idea generation and opportunities exploration.

Subject Name: Workshop Subject code: 23000029 Course outcome:

CO1	Understand applications of hand tools and power tools and operations of machine tools.
CO2	Understand the operations of machine tools.
CO3	Select the appropriate tools required for specific operation.
CO4	Comprehend the safety measures required to be taken while using the tools.
CO5	Prepare Fitting, Carpentry, Plumbing, Welding, and Tin-smithy Jobs.

Semester-II

Subject Name: ENGINEERING PHYSICS

Subject code: 23000005 Course outcome:

CO1	To acquire knowledge of calculus which are integral part of any branch of Physics
CO2	Students learn accurately how to describe motion of objects, planetary motions,
	gravitation etc. Understand the motion of objects in different frame of references
CO3	To learn about basic concepts of electrical charges and currents and their properties
CO4	Student learn about various types of waves and their propagation.
CO5	To understand the principle of calorimetry
CO6	To know about Radiation and its nature, old quantum theory, concept of wave-particle duality and de
C00	Broglie hypethesis.
	To study complex analysis, Cauchy Riemann conditions, Analyticity, Cauchy Integral formula,
CO7	Laurent and Taylor series expansion and definite integrals using contour
	integration.

Subject Name: Communication skills

Subject code: 23000008

CO1	Students will become master of four communication skills.
CO2	They feel confident in speaking and writing English language.
CO3	Students will be able to improve the language skills i.e. Listening Skill, Speaking Skill, Reading Skill, and Writing Skill (LSRW).
CO4	To make them learn about life skills and soft skills.

Subject Name: Maths II Subject code: 23000010 Course outcome:

CO1	Understand vectors in RnRn and operations involving linear combinations.
CO2	Identify subspaces and determine basis and dimension and Perform coordinate
002	transformations and understand the change of basis.
CO3	Understand linear transformations and their properties and represent linear
003	transformations with matrices and explore the concept of similarity.
CO4	Apply inner product spaces to least squares approximation and diagonalization of
004	symmetric matrices and Explore applications of quadratic forms and optimization.
CO5	Apply double and triple integrals over different regions and Utilize Fubini's theorem and
	change of variables in multiple integrals.
CO6	Apply integration techniques to calculate volumes of various solids.

Subject Name: Engineering Graphics

Subject code: 23000011

Course outcome:

CO1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO2	Understanding the object through orthographic projections.
CO3	Construct basic and intermediate geometry and application of engineering curves.
CO4	Enhance visualization skills for developing new products.
CO5	Develop new products through technical communication skill in the form of communicative drawings.
CO6	Develop the theory of orthographic projection and views.

Subject Name: Elements of Civil Engineering

Subject code: 23000015

CO1	Carry out simple land survey to prepare maps with existing details.
CO2	Find out area of irregular shaped plane figures.
CO3	Understand building plan elevation and section.
CO4	Get acquainted with construction materials.
CO5	Get acquainted with hydrological cycle and hydraulic structures.
CO6	Get acquainted with mass transportation systems.

Subject Name: BASIC PROGRAM IN ENTREPRENURESHIP

Subject code: 12300002 Course outcome:

CO1	Develop an understanding of best techniques for idea generation, opportunities exploration, and market research.
CO2	Check technical, market, financial and other types of Feasibility of their business idea
СОЗ	Develop business model to describe the rationale of how an organization creates, delivers, and captures value
CO4	Conduct the customer's survey to know the need of their business idea.

INDUSTRIAL UNIVERSITY FOR STARTUP

Semester: III

Subject Name: Maths III Subject code: 23000015 Course outcome:

CO1	To have a rigorous understanding of the concept of limit of a function.
CO2	The geometrical properties of continuous functions on closed and bounded intervals.
CO3	Extensively about the concept of differentiability using limits, leading to a better understanding for applications.
CO4	The applications of mean value theorems and Taylor's theorem.
CO5	Employ De Moivre's theorem in a number of applications to solve numerical problems

Subject Name: Mechanics of Solid

Subject code: 23080301 Course outcome:

CO1	Explain the basic concepts of Engineering Mechanics,
CO2	to evaluate the variations of shear force and bending moment in different kinds of beams
CO3	Evaluate the shear stress and angle of deflection in a shaft subjected to torque.
CO4	Evaluate Bending and shear stresses in different shaped channels.
CO5	Determine the buckling in the columns using different theories

Subject Name: Material Science and Metallurgy

Subject code: 23080302

CO1	Application of knowledge relating the composition, structure and processing of materials to their uses.
CO2	The Study materials that covers metals, ceramics, polymers, and combinations of materials or composites
CO3	Able to investigate the relationship between structure of materials and their properties.
CO4	Able to understand the new developments such as nano-science and nanotechnology e forefront of the studies
CO5	continue to propel materials science and engineering to the forefront of the studies

Subject Name: Manufacturing Process I

Subject code: 23080303 Course outcome:

CO1	Understand classification, scope and applications of manufacturing methods used in industries.
CO2	Explain the different casting methods with their process details, applications and limitations.
CO3	Understand process details of rolling, forging, extrusion and drawing operations.
CO4	Classify and explain in detail different welding methods with brief introduction to brazing and soldering.
CO5	Understand powder metallurgy process with advantages, limitations and industrial applications.

Subject Name: Kinematics of Machines

Subject code: 23080304

Course outcome:

CO1	Classify and solve for mobility of planar mechanisms
CO2	Perform kinematic synthesis and analysis of planar mechanisms
CO3	Construct and analyze cam profiles for a specified motion of the follower
CO4	Analyze different types of gear trains
CO5	Model and analyze planar mechanisms using software package

Subject Name: Electriacal Technology

Subject code: 23080305 Course outcome:

CO1	Understand the basic concepts of DC circuits and Magnetic circuits and also able to solve problems
	related to DC and magnetic circuits.
CO2	Analysis of Single Phase and three phase AC Circuits and the representation of alternating quantities and
	also determining the power and other parameters in these circuits
CO3	Explain the construction, basic principle of operation, applications and also determine performance
	parameters of electrical Machines.
CO4	Practice Electrical Safety Rules & standards and types of electrical wiring and domestic earthing.

Subject Name: Foundation Program in Entrepreneurship

Subject code: 12300003 Course outcome:

CO1	Demonstrate different Python data types and their structures
CO2	Interpretation of the role of python in steps involved in data science
CO3	Illustrate the use of various operations for data cleansing and transformation
CO4	Analyze data visualization tools for data interpretation and insights of data
CO5	Perform data Wrangling with Scikit-learn applying exploratory data analysis

Semester IV

Subject Name: Maths IV Subject code: 23000018 Course outcome:

CO1	Extract the solution of differential equations of the first order and of the first degree by variables
	separable, Homogeneous and Non-Homogeneous methods
CO2	Find a solution of differential equations of the first order and of a degree
CO2	higher than the first by using methods of solvable for p, x and y
CO3	Compute all the solutions of second and higher order linear differential
	equations with constant coefficients, linear equations with variable coefficients.
CO4	Solve simultaneous linear equations with constant coefficients and Total Differential equations
CO5	Form partial differential equations
CO6	Find the solution of First order partial differential equations for some standard types.

Subject Name: Mechanical Measurement & Metrology

Subject code: 23090402 Course outcome:

CO1	Explain the basics knowledge of measurements, metrology and measuring devices.	
CO2	Understand the principle of linear and angular measuring instruments	
CO3	Fundamentals of various methods for the measurements of screw threads, surface roughness parameters and working of optical measuring instruments.	
CO4	Understand various advanced measuring devices and machine tool metrology	
CO5	Understand and able to use various devices for measuring torque, force, strain, stress and temperature.	

Subject Name: Manufacturing Process-II

Subject code: 23090404 Course outcome:

CO1	Understand basic concepts of Manufacturing processes.
CO2	To understand Metal casting process, patterns, defect and its applications.
CO3	To understand different types of welding process, soldering and brazing process.
CO4	To understand metal shaping and forming process.
CO5	Understanding of Plastic, Ceramic and Glass processing techniques.

Subject Name: Engineering Thermodynamics

Subject code: 23090401 Course outcome:

CO1	Explain basic concepts, Zeroth and First Laws of Thermodynamics.
CO2	Describe Second Law of Thermodynamics and its corollaries
CO3	Estimate various thermodynamic properties of pure substance, ideal gas and mixture
CO4	Derive various thermodynamic relations such as Joule-Thomson, Clausius Clapeyron, etc.
CO5	Analyse various Vapour power cycles and effect of operating parameters on their performance.

Subject Name: Machine Design and Industrial Drafting

Subject code: 23090403

Course outcome:

CO1	To understand theory of failures.
CO2	Understand fundamentals of Beams and Column.
CO3	To design shafts, keys and couplings.
CO4	To understand design of power screws and threaded joints.
CO5	Basic understanding of Tolerances, Limits and Fits.

Subject Name: Intermediate Program in Entrepreneurship

Subject code: 12300004 Course outcome:

CO1	Demonstrate the various features of microprocessor, memory and I/O devices
CO2	Identify the hardware elements of 8085 microprocessor.
CO3	Select appropriate 8085 instructions based on size and functions to write an assembly language program
CO4	Design different interfacing system using concepts of memory and I/O interfacing.
CO5	Demonstrate the features of advance microprocessors.

Semester: V

Subject Name: Fluid Mechanics

Subject code: 23090501 Course outcome:

CO1	To understand fluids and its properties.
CO2	Understand laminar and turbulent flow through pipes and parallel plates.
CO3	Understand various types of flow, Mass Momentum and energy conservation and related equations.
CO4	Explain various applications of Bernoulli's Equation, Notches and Weirs, Orifices and Mouthpieces
CO5	Understand different types of flow through pipes, Viscous and turbulent flow.

Subject Name: Design of Machine Elements

Subject code: 23090502 Course outcome:

CO1	Introduction to design, material and its properties.
CO2	To design against fluctuating loads, S-N diagram, Soderberg and Gerber criteria.
CO3	To design thin and spherical vessels.
CO4	To understand design procedure of belt and chain drives.
CO5	To understand different types of springs, stresses and different loading condition of spring.

Subject Name: Heat Transfer Subject code: 23090503

CO1	Explain the governing laws and modes of heat transfer
CO2	Compute temperature distribution and heat transfer rate in steady and unsteady state heat conduction
CO3	Interpret and analyse natural and forced convective heat transfer with dimensional analysis
CO4	Analyse the performance of heat exchangers under different flow conditions using LMTD and NTU method.
CO5	Analyse radiative heat transfer between two or more black/gray bodies

Subject Name: Theory of Machine

Subject code: 23090504 Course outcome:

CO1	Explain Kinematic Chain, Mechanisms and their Inversions; analyze velocity and acceleration of various mechanisms.
CO2	Solve problem-related to friction. Explain the principle and applications of clutch and brake.
CO3	Explain the principle and applications of a gyroscope.
CO4	To understand different types of Flywheels.
CO5	To study about different types Governors and their force analysis.

Subject Name: Control Engineering

Subject code: 23090505 Course outcome:

CO1	Understand basic concepts of control system
CO2	Modelling of Translational and rotational, mechanical, electrical and thermal system.
CO3	To understand time response analysis and state space analysis.
CO4	To understand different types of hydraulic and pneumatic control systems.

Subject Name: Case Study Subject code: 23000027 Course outcome:

CO1	By analysing case studies, students develop strategies to address complex problems.
CO2	Students enhance their ability to gather, assess, and learn how to conduct thorough investigations into specific issues.
CO3	Students learn to evaluate and synthesize information from various sources.
CO4	Presenting findings and writing reports.
CO5	Engaging in discussions are integral parts of case studies, helping students improve their ability to articulate their analysis and recommendations clearly.

Subject Name: Intellectual Property Rights

Subject code: 12300005 Course outcome:

CO1	Evaluate strength and limitation of cloud computing
CO2	Analyze different cloud depoly and services architecture model
CO3	Understand various enterprise application in cloud computing
CO4	Apply the virtualization concepts
CO5	Analyze data security mechanism and SLA management in cloud

Semester VI

Subject Name: Dynamics of Machinery

Subject code: 23090601 Course outcome:

CO1	To understand about Balancing of Rotating Mass and Reciprocating Engines
CO2	To describe free and forced vibration of systems.
CO3	To derive equations of motion for two degree system and multidegree system.
CO4	Introduction and understanding of vibration measurement and analysis devices/
CO5	Dynamic analysis of force-closed cam follower.

Subject Name: Fluid Power Engineering

Subject code: 23090602 Course outcome:

CO1	To understand about Balancing of Rotating Mass and Reciprocating Engines
CO2	To describe free and forced vibration of systems.
CO3	To derive equations of motion for two degree system and multidegree system.
CO4	Introduction and understanding of vibration measurement and analysis devices/
CO5	Dynamic analysis of force-closed cam follower.

Subject Name: Production Technology

Subject code: 23090603 Course outcome:

CO1	To understand basic principle of metal cutting and handson training on lathe machine.
CO2	Understanding of Thermal aspects in machining, Gear and thread manufacturing techniques.
CO3	Classification of presses, Jigs and fixtures and their applications.
CO4	To study about different non-conventional machining techniques.
CO5	Use appropriate instruments and techniques to measure the cutting forces during turning, milling and drilling

Subject Name: Refrigeration air Conditioning

Subject code: 23090604

Course outcome:

CO1	Analyse the reversed Carnot cycle and vapour compression refrigeration cycle (VCR).
CO2	Select the air-refrigeration systems for aircraft, and vapour absorption refrigeration system for rural and remote areas
CO3	Identify the Psychrometric processes for different applications and design the parameters of air-conditioning system as per standards.
CO4	Understand the human comfort, ASHRAE chart and concept of effective temperature.
CO5	Estimate cooling load and heating load considering human comfort and optimize the air conditioning system as per requirements.

Subject Name: Industrial Engineering

Subject code: 23090605 Course outcome:

CO1	To understand location, selection of plant layout.
CO2	Describe production planning and control.
CO3	To demonstrate productivity, applications, work and motion study.
CO4	To understand job evaluation, wage plan, industrial legislation and statistical quality control.

Subject Name: Seminar Subject code: 23000026 Course outcome:

CO1	Present the latest technologies and recent advancements in technical field.
CO2	Identify grey areas of his/ her interpersonal skills by critical evaluation of presentation techniques and further
CO3	Communicate effectively verbally and or non-verbally for knowledge enhancement.
CO4	Use the internet, books, resource persons and library effectively to retrieve the required information.
CO5	Cite the references of the originating sources of concept, data and information.

Semester: VII

Subject Name: Computer Aided Design & Manufacturing

Subject code: 23090701 Course outcome:

CO1	To analize 1-D concept, Trusses and beams.
CO2	To visualize the role of computer in manufacturing, types of manufacturing and CIM.
CO3	To understand different types of NC/CNC machine tools.
CO4	To understand concept of Group Technology and CAPP
CO5	To describe component of FMS and need of FMS.

Subject Name: Power Plant Engineering

Subject code: 23090702 Course outcome:

CO1	Discuss the load duration curves, site selection and economics of power plants.
CO2	Describe the effect of various components and steam conditions on the performance of steam power plant.
CO3	Analyse the performance of Steam turbine power plant under various operating and geographical conditions.
CO4	To describe working of different types of nozzles, turbines, condensors and cooling towers.
CO5	To study about nuclear power plant and gas turbine power plant.

Subject Name: Operation Research

Subject code: 23090703

CO1	To understand requirement of Linear programming, assumptions in LP.
CO2	To solve problems related to Game theory and transportation problems.
CO3	To solve problems related to replacement theory and Queing theory.
CO4	To implement CPM and PERT in industry.
CO5	To solve problems based on Decision theory.

Subject Name: Machine Design

Subject code: 23090704 Course outcome:

CO1	Identify the factors for engineering components design and analyze various members subjected to direct stress.
CO2	Design various members such as beams, levers, laminated springs for bending and stiffness.
CO3	Design various machine components under torsion such as shafts, shaft couplings, and keys.
CO4	Design various threaded fasteners and power screw components.
CO5	Design curved machine components.

Subject Name: Metal Forming Analysis

Subject code: 23090712 Course outcome:

CO1	Explain and interpret the basics of various forming processes.
CO2	Explain and apply the yield criteria and governing equations of plasticity.
CO3	Apply the slab method of metal forming process analysis.
CO4	Apply the Slip-line field theory of metal forming process analysis.
CO5	Apply the upper and lower bound techniques of metal forming process analysis.

Subject Name: Project -1 Subject code: 23000023 Course outcome:

CO1	Define a problem and review literature to identify the gaps, objectives & scope of the work.
CO2	Analyse the problems of mechanical engineering to formulate objectives of project.
CO3	Design a system, component, or process to meet the desired needs of social and sustainability.
CO4	Demonstrate the techniques, skills, and modern engineering tools necessary for engineering practice.
CO5	Prepare a professional report as per recommended format and defend the work.

Semester: VIII

Subject Name: Project - II Subject code: 23000025 Course outcome:

CO1	Define a problem and review literature to identify the gaps, objectives & scope of the work.
CO2	Analyse the problems of mechanical engineering to formulate objectives of project.
CO3	Design a system, component, or process to meet the desired needs of social and sustainability.
CO4	Demonstrate the techniques, skills, and modern engineering tools necessary for engineering practice.
CO5	Prepare a professional report as per recommended format and defend the work.

Subject Name: Industrial Training

Subject code: 23000028 Course outcome:

CO1	Participate in the projects in industries during his or her industrial training.
CO2	Describe use of advanced tools and techniques encountered during industrial training and visit.
CO3	Interact with industrial personnel and follow engineering practices and discipline prescribed in industry.
CO4	Develop awareness about general workplace behavior and build interpersonal and team skills.
CO5	Prepare professional work reports and presentations.

Subject Name: Energy Conservation and Management

Subject code: 23000023

CO1	Describe the basics of energy management, energy demand management and energy auditing.
CO2	Highlight the need for energy conservation and describe the resource development for sustainability.
CO3	Identify the need for energy management in different sectors.
CO4	Forecast the energy demand for different sectors and integrate different energy resources to meet the energy demand.
CO5	Describe various renewable energy resources and their management for cleaner production.

SWARRNIM STRATUP & INNOVATION UNIVERSITY SWARRNIM INSTITUTE OF TECHNOLOGY

B.TECH CIVIL ENGINEERING SEMESTER 3rd

Course: Maths - III

Subject code: 2300015

Course outcome:

CO 1	Apply Fourier series to analyze and represent periodic functions.
CO 2	Apply Laplace transforms to solve differential equations and system problems.
CO 3	Apply methods such as integrating factor, Bernoulli equations, and linear differential equations.
CO 4	Apply series solutions to solve differential equations and analyze the convergence and divergence of series solutions.
CO 5	Apply the method of separation of variables to solve PDEs to analyze solutions in cylindrical and spherical polar coordinates.

Course: Surveying

Subject code: 23030301

CO 1	Illustrate the application of Plane table and Theodolite	
CO 2	To know about the basic principles of linear, angular and levelling.	
CO 3	Theodolite traversing and plotting of traverse by applying corrections in Gale's traverse table	
CO 4	Setting out simple circular curve by different methods	246
CO 5	Setting out combined curve (Transition - Circular – Transition)	120

CO 6	Analyse the uses of different other modern tools in survey projects
CO 7	Computation of area of submergence and storage volume from contour maps for reservoir projects.

Course: Building Construction

Subject code: 23030302

Course outcome:

CO 1	Understand to sub surface soil strata investigation.
CO 2	Construct various types of shallow foundation.
CO 3	Execute various types of masonry.
CO 4	Construct various structural and non-structural building components.
CO 5	Erect various temporary works for new and existing buildings.
CO 6	Apply special treatments like water resistance, thermal insulation acoustical construction.
CO 7	Select appropriate method of construction.
CO 8	Explain causes of failure and remedial measures for foundations
CO 9	Explain the green buildings and suggest how to convert existing building in to green building.

Course: Concrete Technology

Subject code: 23030303

Course outcome:

CO 1	Students have learned the fundamentals concrete and how the properties of concrete are affected by the properties of the ingredients of concrete.
CO 2	Students were trained to get selected in reputed companies and for pursuing higher education.
CO 3	Students expressed keen interest in doing research in the area of concrete specially SCC, eco-friendly and smart concretes & bacterial concrete.

Bhoyar

Course: Strength of Material

Subject code: 23030304

Course outcome:

CO 1	Apply fundamental principles of mechanics & principles of equilibrium to simple and practical problems of engineering.
CO 2	Apply principles of statics to determine reactions & internal forces in statically determinate beams.
CO 3	Determine centroid and moment of inertia of a different geometrical shape and able to understand its importance.
CO 4	Know basics of friction and its importance through simple applications.
CO 5	Understand the different types of stresses and strains developed in the member subjected to axial, bending, shear & torsional effects.
CO 6	Know behaviour & properties of engineering materials.

Course: Fluid Mechanics

Subject code: 23030305

CO 1	Understand the basic concept of fluid mechanics.
CO 2	Calculate to statics, dynamics and various approaches to fluid mechanics.
CO 3	To know about the fundamentals of flow through pipes
CO 4	Classify the different types of flow and it characteristics
CO 5	Correlate fundamentals of fluid mechanics with various mechanical systems

SEMESTER 4TH

Course: Maths-IV

Subject code: 23000018

Course outcome:

CO 1	Apply methods to handle approximations, errors, and significant figures.
CO 2	Analyze and solve engineering problems using root-finding techniques.
CO 3	Solve systems of linear equations using Gauss elimination, Gauss-Seidel methods, and their applications.
CO 4	Apply least squares linear and polynomial regression for data fitting.
CO 5	Apply numerical integration techniques such as the trapezoidal rule and Simpson's rules to solve engineering problems involving numerical integration through case studies
CO 6	Apply Euler's method and Runge-Kutta methods to solve ordinary engineering problems involving ODEs through case studies.
CO 7	Apply moving averages and predict future trends and calculate confidence intervals and assess statistical significance.

Course: Theory of Structure-I

Subject code: 23030401

CO 1	Apply principles of statics to determine reactions & internal forces in statically determinate structures.
CO 2	Determine displacements of statically determinate structures.
CO 3	Determine stresses due to axial & eccentric loading.
CO 4	Determine buckling load for columns & struts with different end conditions.
CO 5	Determine strain energy stored in a body.
CO 6	Determine stresses in thin cylinders and spherical vessels
	E Canal

Course: Applied Fluid Mechanics

Subject code: 23030402

Course outcome:

CO 1	Analyze fluid flow through pipes in series, parallel and pipe networks under laminar and turbulent flow conditions.
CO 2	Analyze and design streamlined objects considering boundary layer effects.
CO 3	Analyze open channel flow and design optimal sections; calculate forces on sluice gates considering specific energy and momentum principle.
CO 4	Understand, analyze and study the performance characteristics of hydraulic machine
CO 5	Carry out model studies for fluid flow problems

Course: Geotechnics and Applied Geology

Subject code: 23030403

Course outcome:

CO 1	Know soil formation, types of soils, types of soils found in various parts of India.
CO 2	Determine the index properties and interrelationships between various soil parameters.
CO 3	To know the different types of soil classification systems and Classify field soils as per particle size and atterberg's indices.
CO 4	Students will be made familiar with the internal structure of the Earth, its properties, and processes.
CO 5	Know types of soil water found in nature, its permeability characteristics and seepage determination.
CO 6	Understand about forces acting upon the surface of the Earth. To appreciate processes and geological agents involved in the shaping surface of the earth, and will learn about the Landforms produced because of these processes.
CO 7	To know about hazards due to volcanic and seismic activity.
CO 8	To identify major mineral and rock types in hand-specimen.
CO 9	To predict the likely engineering behavior of rocks under specified geologic conditions.

Bhoyan Rathod

Course: Building and Town Planning

Subject code: 23030404

Course outcome:

CO 1	Understand and interpret civil engineering drawings.
CO 2	To know principles of planning, building Bye laws, town planning and perspective drawing.
CO 3	Produce various civil engineering drawings.
CO 4	Develop architectural design of building by applying bye laws and principle of planning.

Course: Advanced Surveying

Subject code: 23030406

CO 1	To know about tachometry and geodetic survey.
CO 2	Examine the principles of theory of errors for correction of measurements.
CO 3	Examine the knowledge of astronomy for solving civil engineering problems.
CO 4	Explain use of aerial camera, aerial photographs, and procedure of aerial survey.
CO 5	Utilize stereoscope and parallax bars.
CO 6	Utilize total station and other modern survey instruments.
CO 7	Apply GIS in solving engineering problems

SEMESTER 5TH

Course: Highway Engineering

Subject code: 23030501

Course outcome:

CO 1	Design a flexible pavement for a highway
CO 2	Select a suitable alignment for a highway
CO 3	Evaluate a highway link in terms of its impact on the existing network
CO 4	Forecast future traffic flows along highway links
CO 5	Demonstrate an understanding of the appraisal process for a highway
CO 6	Analyze highway links and intersections in terms of their capacity
CO 7	Geometrically design the alignment of a highway
CO 8	Plan an earthworks programme
CO 9	Describe different highway structures, the methods by which they are analysis and constructed
CO 10	Design a highway drainage system

Course: Environmental Engineering

Subject code: 23030502

CO 1	Know the role of microorganisms in various components of environments
CO 2	Understand the quality and characteristics of waste water
CO 3	Understand and design solid waste management system
CO 4	Understand various types of pollution
CO 5	Understand various environmental Acts.
CO 6	Determine various water/air quality parameters
	EGSIGN

Course: Theory of Structure-II

Subject code: 23030503

Course outcome:

CO 1	Apply equilibrium and compatibility equations to determine response of statically
	determinate and indeterminate structures.
CO 2	Determine displacements and internal forces of statically indeterminate structures by
	classical, iterative and matrix methods.
CO 3	Determine internal forces and reactions in determinate and indeterminate structures subjected
	to moving loads.

Course: Geotechnical Engineering

Subject code: 23030504

Course outcome:

CO 1	To know various index (preliminary) and engineering properties of soil, its determination
	through various methodology and application for design of shallow and deep foundation
	Systems for various civil engineering structures.
	Give Knowledge of various topics like compaction, shear strength, consolidation, earth
CO 2	Pressure, stress distribution which gives insight to students to analyses soil parameters based
	on application and need of project site.
	The course will also develop understanding about soil testing procedures, experimentation
CO 3	techniques and related issues. Simulation of mechanics on soil as a material to understand its
	Behaviours before failure and estimating its permissible values.
CO 4	The course also discusses details of foundations, its selection procedures as per soil
	conditions and various modifications available for various degrees of loads.

Course: Hydrology and Water Resource Engineering

Subject code: 23030505

CO 1	Compute mean precipitation from a catchment	
CO 2	Compute mean precipitation from a catchment	

CO 3	Calculate runoff from a catchment
CO 4	Compute peak flood flow
CO 5	Compute reservoir capacity using mass curve
CO 6	Compute dependable flow using flow duration curve for the requirement of irrigation, power generation etc.
CO 7	Basic idea about reservoir sedimentation and its control
CO 8	Compute the capacity of well
CO 9	Estimation of design flood for the design of hydraulic structure
CO 10	Measures of water conservation to battle drought

STARTUP & INNOVATION UNIVERSITY

Bhoyan Rathod.

SEMESTER 6TH

Course: Water and Waste Water Engineering

Subject code: 23030601

Course outcome:

CO 1	Design the water supply and wastewater treatment systems.
CO 2	Determine the treatment efficiency of treatment units

Course: Design of Reinforced Concrete Structure

Subject code: 23030602

Course outcome:

CO 1	Design and draw reinforced concrete Cantilever and Counterfort Retaining Walls
CO 2	Design and draw flat slab as per code provisions
CO 3	Design and draw reinforced concrete and steel water tanks
CO 4	Apply the concept of earthquake-resistant design in the building.
CO 5	Assess loads, prepare layout, analyse, design and detail of various structural elements for RC framed structure up to G+3.
CO 6	Identify the typical failure modes of RC building, retaining walls, water tanks, flat slabs & prestressed concrete sections.

Course: Railway Bridge and Tunnel Engineering

Subject code: 23030603

CO 1	Identify the components of railway tracks.
CO 2	Maintain the railway tracks.
CO 3	The students will gain an experience in the implementation of Railway, Bridge and Tunnel Engineering on engineering concepts which are applied in field of Transportation Engineering.
CO 4	Diagnose the condition of bridge.

CO 5	Maintain different types of railway bridges and their components.
CO 6	Maintain different types of tunnels.

Course: Advanced Construction Equipment

Subject code: 23030604

Course outcome:

CO 1	Supervise the heavy construction sites.
CO 2	Understand the working principle and use of various equipments
CO 3	Select appropriate construction equipments for desired construction works.
CO 4	Execute the operations of Demolition of structures with safety.
CO 5	Erect the false work for Bridges and form work for Heavy structures

Course: Professional Practice and Valuation

Subject code: 23030605

CO 1	Calculate the estimated cost of any proposed civil engineering structure and The value of any old structure
CO 2	Apply the software for working out quantities of items of civil works.

SEMESTER 7TH

Course: Design of Steel Structure

Subject code: 23030701

Course outcome:

CO 1	Prepare structural layout of Industrial steel structures, plate girder, foot-over bridge.
CO 2	Determine the loads acting on it and identify the typical failure modes.
CO 3	Apply the principles, procedures and current Indian codal provisions to the analysis and design of Industrial structures, plate girder & foot-over bridges.
CO 4	Apply the principles of plastic design in steel beams & portal frames.

Course: Irrigation Engineering

Subject code: 23030702

Course outcome:

CO 1	Calculate the pressure at key points of sheet piles and floor thickness for a weir/barrage using Khosla's theory
CO 2	Concepts of irrigation and different hydraulic structures.
CO 3	How to estimate the quantity of water required by crops.
CO 4	Be able to plan and design irrigation projects.
CO 5	Design channels and other irrigation structures required for irrigation, drainage, soil conservation, flood control and other water-management projects.

Course: Urban Transportation Engineering

Subject code: 23030703

CO 1	Know about the transportation system planning in new or existing town or city.
CO 2	Analyze the issues related to congestion and inconvenience due to Urban transportation.
CO 3	To understand and evaluate current scenarios of traffic management and improve it.

Course: Ground Improvement Techniques

Subject code: 23030704

Course outcome:

CO 1	To know various index (preliminary) and engineering properties of soil, its determination through various methodology and application for design of shallow and deep foundation systems for various civil engineering structures.
CO 2	Give Knowledge of various topics like compaction, shear strength, consolidation, earth pressure, stress distribution which gives insight to students to analyses soil parameters based on application and need of project site.
CO 3	The course will also develop understanding about soil testing procedures, experimentation techniques and related issues. Simulation of mechanics on soil as a material to understand its behavior before failure and estimating its permissible values.
CO 4	The course also discusses details of foundations, its selection procedures as per soil conditions and various modifications available for various degrees of loads.

Course: Remote Sensing and GIS

Subject code: 23030705

Course outcome:

CO 1	Ability to develop Orthographic and Contour maps using aerial photographs and Remote sensing Images
CO 2	Ability to develop maps using Total Station, GIS, GPS and Scanners
CO 3	Ability to create GIS application referencing Spatial features with Attribute data

Course: Earthquake Engineering

Subject code: 23030706

CO 1	Determine the response of SDOF & MDOF structural system subjected to vibration including
	earthquake. Determine the loads acting on it and identify the typical failure
CO 2	Apply the concept of Earthquake Resistant Design & concept of lateral load distribution on
	buildings.
CO 3	Determine the lateral forces generated in the structure due to earthquake.
CO 4	Apply the concept of ductile detailing in RC structures.

SEMESTER 8TH

Course: Construction Project Management

Subject code: 223030801

Course outcome:

CO 1	Execute all type of managerial tasks in construction projects.
CO 2	Use software for construction projects management.

Course: Prestressed Concrete

Subject code: 223030802

Course outcome:

CO 1	Apply concepts & methods for pre stressing systems for different materials.
CO 2	compute stresses in beams due to transverse loads & prestressing.
CO 3	Determine the losses in beams due to prestress, short- and long-term deflection, flexural and shear strength of beam.
CO 4	Analyze and design substructure, foundation and adjoining elements.

Course: Foundation Engineering

Subject code: 223030803

CO 1	On choosing suitable foundation system (shallow/Deep) for different structures, that satisfy the allowable bearing capacity and settlement requirements based on soil properties
CO 2	Design deep foundation satisfying bearing capacity and settlement requirements.
CO 3	Design and analysis of retaining walls and sheet piles under static loads.
CO 4	Students will have the ability to select type of foundation required for the soil at a place and able to design shallow, foundation, deep foundation and retaining structures.

Course: Air Pollution and Control

Subject code: 223030804

Course outcome:

CO 1	Select the most appropriate technology to purify and/or control emission of particulate
	emission.
CO 2	Suggest the applicable technology to prevent, control or scrub the oxide of sulfur from the gas
	and design the control equipment.
CO 3	Apply the best technologies for control of NOx.
CO 4	Propose measures to control the emission from mobile sources.
CO 4	1
CO 5	Devise the techniques to control gases and vapors from industries using concepts of
	absorption, adsorption, and condensation.

Course: Dock Harbour and Airport Engineering

Subject code: 223030805

CO 1	To understand the various elements of Harbour and Airport.
CO 2	To understand the fundamentals of planning and design of various marine structures.
CO 3	To make the students aware about the operations in Harbour.
CO 4	To give knowledge of maintenance techniques at Harbour.
CO 5	To understand the fundamentals of planning and design of Airport structures.
CO 6	To make students aware of design of runway and taxiways at Airport.
CO 7	To make students aware of the operations at Airport.

SWARRNIM STRATUP & INNOVATION UNIVERSITY SWARRNIM INSTITUTE OF TECHNOLOGY

M.TECH STRUCTURAL ENGINEERING

SEMESTER 1ST

Course: English for Research Paper Writing (Audit Course)

Subject code: 26080101

Course outcome:

CO 1	Prepare structural layout of Industrial steel structures, plate girder, foot-over bridge.
CO 2	Determine the loads acting on it and identify the typical failure modes.
CO 3	Apply the principles, procedures and current Indian codal provisions to the analysis and design of Industrial structures, plate girder & foot-over bridges.
CO 4	Apply the principles of plastic design in steel beams & portal frames.

Course: Research Methodology and IPR

Subject code: 26080102

CO 1	Conduct a quality literature review and find the research gap.
CO 2	Identify an original and relevant problem and identify methods to find its solution
CO 3	Validate the model
CO 4	Present and defend the solution obtained in an effective manner in written or spoken form.

CO 5	Fol1 research ethics
CO 6	Understand IPR protection for further research and better products

Course: Advanced Structural Analysis

Subject code: 26080103

Course outcome:

CO 1	Analyze skeleton structures using stiffness method
CO 2	Analyze skeleton structures having secondary effects using stiffness method
CO 3	Derive element properties and analyze structure using finite element method
CO 4	Solve realistic engineering problems through computational simulations using finite element code

Course: Advanced Concrete Design of Structures

Subject code: 26080104

CO 1	Carry out load calculation, analysis, design and detailing of Slender Column, Corbel, Deep beams, flat slabs, water tanks, bunker and silos, Shear Walls as per relevant IS code of practice.
CO 2	Analysis and design of raft foundation, strip footing and pile caps
CO 3	Ensure serviceability criteria for reinforced concrete structural elements

Course: Analytical and Numerical methods for Structural Engg. (Elective 1)

Subject code: 26080106

Course outcome:

CO 1	Solve algebraic equations
CO 2	Obtain numerical solution of ordinary and partial differential equations
CO 3	Apply integration method/s for structural analysis
CO 4	Carry out interpolations and curve fitting
CO 5	Obtain solution of Eigen value problems and Fourier series for structural analysis
CO 6	Apply iterative and transformation methods in structural engineering

Course: Theory and applications of Cement Composites (Elective 1)

Subject code: 26080107

CO 1	Formulate constitutive behaviour of composite materials – Ferrocement & FiberReinforced Concrete - by understanding their strain- stress behaviour
CO 2	Classify the materials as per orthotropic and anisotropic behaviour
CO 3	Estimate strain constants using theories applicable to composite materials
CO 4	Analyse and design structural elements made of cement composites

Course: Theory of structural stability (Elective 1)

Subject code: 26080108

Course outcome:

CO 1	Determine stability of columns and frames
CO 2	Determine stability of beams and plates
CO 3	Use stability criteria and concepts for analyzing discrete and continuous systems

Course: Theory of Thin plates & shells (Elective 2)

Subject code: 26080109

CO 1	Use analytical methods for the solution of thin plates and shells.
CO 2	Use analytical methods for the solution of shells
CO 3	Apply the numerical techniques and tools for the complex problems in thin plates
CO 4	Apply the numerical techniques and tools for the complex problems in shells.

Course: Advanced Solid Mechanics (Elective 2)

Subject code: 26080110

Course outcome:

CO 1	Understanding the basic concepts and solve simple problems of elasticity and plasticity
CO 2	Solve the advanced practical problems related to the theory of elasticity, concepts of stress and strain, strain energy, and failure criteria
CO 3	Propose materials and structural elements to the analysis of complex structures
CO 4	Apply numerical methods to solve continuum problems.

Course: Structural Optimization (Elective 2)

Subject code: 26080111

CO 1	Understand optimization techniques,
CO 2	Classify the optimization problems
CO 3	Derive response quantities corresponding to design variable
CO 4	Apply optimization techniques to trusses, beams and frames

SEMESTER 2nd

Course: Disaster Management (Audit Course)

Subject code: 26080105

Course outcome:

CO 1	learn to demonstrate a critical understanding of key concepts in disaster risk reduction and
	humanitarian response
CO 2	critically evaluate disaster risk reduction and humanitarian response policy and practice
	from multiple perspectives
CO 3	develop an understanding of standards of humanitarian response and practical relevance in
	specific types of disasters and conflict situations
CO 4	Critically understand the strengths and weaknesses of disaster management approaches,
	planning, and programming in different countries, particularly their home country or the
	countries they work in.

Course: Advanced Steel Design

Subject code: 26080201

CO 1	Design steel structures/ components by different design processes.
CO 2	Analyze and design beams and columns for stability and strength, and drift.
CO 3	Design welded and bolted connections.
CO 4	Apply unified code philosophy to steel building design
CO 5	Apply plastic method for design of beams and frames
CO 6	Design & detail Industrial building, steel stacks & composite structures as per the IS code

Course: Structural Dynamics

Subject code: 26080202

Course outcome:

CO 1	Analyze and Interpret dynamics response of single degree freedom system using fundamental theory and experiments
CO 2	Analyze and Interpret dynamics response of Multi degree freedom system using
CO 2	fundamental theory and experiments
CO 3	Differentiate the effects of various types of dynamic loads
CO 4	Use structural engineering software for dynamic analysis
CO 5	Perform & interpret the results of various experiments on models to understand structural
	behavior of symmetrical & un-symmetrical structures in plan & elevation

Course: Structural Design Project

Subject code: 26080203

CO 1	Use computational tool for modeling, analyzing & designing structures using relevant
	codes.
CO 2	Prepare site visit reports
CO 3	Prepare detailed design report
CO 4	Prepare structural drawings which may be Good for construction.

Course: Design of Formwork

Subject code: 26080204

Course outcome:

CO 1	Use computational tool for modeling, analyzing & designing structures using relevant codes.
CO 2	Prepare site visit reports
CO 3	Prepare detailed design report
CO 4	Prepare structural drawings which may be Good for construction.

Course: Design of 3 rise Structures

Subject code: 26080205

CO 1	Analyze, design and detail tall structures under different loading conditions by static and dynamic method of analysis
CO 2	Use of computational software for analysis and design of 3-rise structures
CO 3	Apply codal provisions for tall structures.
CO 4	Choose & apply appropriate structural systems for different size & height of structure
CO 5	Develop design basis report

Course: Design of Masonry Structures

Subject code: 26080206

CO 1	Distinguish from a wide range of materials for their suitability to arrive at feasible and optimal
	solutions for masonry constructions
CO 2	Apply knowledge of structural masonry for advanced research and construction procedures
CO 3	Justify the design of masonry buildings for sustainable development
CO 4	Check the stability of walls

Course: Structural Health Monitoring & Retroffiting of Structures

Subject code: 26080207

Course outcome:

CO 1	Diagnose the distress and the cause of distress in the structure.
CO 2	Detect the changes in the characteristics of the structure
CO 3	Assess the remaining performance capacity
CO 4	Choose & apply the appropriate repair and retrofitting techniques for damaged structures.

Course: Design of Bridge Structures

Subject code: 26080208

Course outcome:

CO 1	Analyze and design small to 2 span of reinforced concrete slab culverts, T beam bridges as per IRC
	specifications
CO 2	Apply design principles of pre-stressed concrete T beam bridges, box girder bridges, balanced cantilever bridges
CO 3	Use of computational software for analysis & design of bridges
CO 4	Choose & apply appropriate structural form for different span of bridges
CO 5	Develop design basis report

Course: Soil Structure Interaction

Subject code: 26080209

CO 1	Apply various theories applicable to SSI and will have capacity to idealize soil response in order to analyze and design rigid and flexible foundation elements subjected to different
	loadings
CO 2	Calculate Contact pressure and settlement under shall foundations, mat foundation, pile-raft
	foundation, settlement computation from constitutive laws.
CO 3	Analyise retaining structures through various analytical and graphical approaches, and design
	supporting structures for excavations
CO 4	Analyse sub-structural and super-structural element using various SSI tools based on hybrid
	models, discrete models and FEM approach and elastic theory approach
CO 5	Analyise vertical piles, laterally loaded piles and pile-raft system and foundations subjected
	to dynamic forces/seismic forces

SEMESTER 3rd

Course: Industrial Safety

Subject code: 26080301

Course outcome:

CO 1	Understand Importance of Safety and Important related Acts.
CO 2	Apply Maintenance techniques as per requirements and able to compare for with different technique for better performance
CO 3	Understand wear and corrosion, its causes and remedial actions for preventions
CO 4	Demonstrate fault tracing, its methods and application

Course: Operation Research

Subject code: 26080302

CO 1	Students should able to apply the Liner programming techniques to solve problems of real-
	life applications and carry out post optimality analysis.
CO 2	Students should able to apply the concepts of non-linear programming and apply them for
	real life problems
CO 3	Students should able to obtain quantitative solutions in business decision making under conditions of certainty, risk and uncertainty.
CO 4	Students should able to implement various scientific tools and models that are available in
	the subject to take decisions in a complex environment.

Course: Composite Materials

Subject code: 26080303

Course outcome:

CO 1	Understanding the Composite Material
CO 2	Apply Different materials as per requirements and able to compare for with different technique for better performance
CO 3	Analyze different search techniques in Casting
CO 4	Develop material basis report

Course: Design of Prestressed Concrete Structures (Program Elective-V)

Subject code: 26080304

CO 1	Apply principle of prestressing, determination of losses, deflections and cable profile
CO 2	Analyze and design pre-tensioned and post-tensioned prestressed concrete beam with limit state design method
CO 3	Apply principles of prestressing to slab, column, beam-column, pipes & cylindrical water tank
CO 4	Apply prestressing techniques to composite structures like Prestressed concrete beam over cast-in-situ slab.
CO 5	Apply design principles of partial prestressing, prestressing of few special structures like folded plates, cylindrical shell and poles.

Course: Earthquake Resistant Design of Structures (Program Elective-V)

Subject code: 26080305

Course outcome:

CO 1	Apply the concept of Earthquake Resistant Design & appraise the effect of structural &
	architectural irregularities of buildings
CO 2	Determine the lateral loads on SDOF & MDOF structural system subjected to earthquake
CO 3	Analyze RCC framed structures through Equivalent static force method - Response
136	spectrum method for determining the lateral forces generated due to earthquake. Design & detailing of Multi-storey RC building using the available software
CO 4	Appraise the concepts of ductile detailing for various structural elements in RC structures
CO 5	Classify & describe various control systems & apply to framed structures

Course: Advanced Design of foundations Systems (Program Elective-V)

Subject code: 26080306

CO 1	Apply various design approaches, selection of proper foundation system as per sub-soil conditions
	based on codal provisions and theoretical practice folled
CO 2	Analyze and design rigid and flexible foundation systems using elastic theories based on numerical
	and analytical approaches through software including soil structure interaction effect
CO 3	Design temporary and permanent soil retaining structures, excavation supports, foundations in water
	bodies and 3 embankments
CO 4	Apply conceptual knowledge of special foundations such as batter piles, shell foundations and sheet
	pile walls for various applications such as resisting 3 lateral loads.

SWARRNIM STARTUP & INNOVATION UNIVERSITY SWARRNIM NSTITUTE OF TECHNOLOGY ENVIRONMENTAL ENGG

3rd semester

Course Name: - Occupational Safety and Health Principles

Subject Code: -23110303.

Learning Outcomes:

CO	After the completion of the course the student should be able to
CO1	Choosing the right control approaches should be based on the control hierarchy.
CO2	Identify relevant regulatory and national consensus standards along with best practices that are applicable.
CO3	Analyze injury and illness data for trends.
CO4	Evaluate workplace to determine the existence of occupational safety and health hazards.

Course Name: - Environmental chemistry

Subject Code: -23110301

СО	After the completion of the course the student should be able to
CO1	An understanding of chemical methods employed for environmental problem solving.
CO2	Developed expertise relevant to the professional practice of chemistry, environmental science and engineering.
CO3	Experience in some scientific methods employed in environmental chemistry.
CO4	Developed skills in procedures and instrumental methods applied in analytical tasks of environmental chemistry.
CO5	Developed skills in the scientific method of planning, developing, conducting, reviewing and reporting experiments.

Course Name: - Unit Operations and Processes

Subject Code: -23110304

CO	After the completion of the course the student should be able to
CO1	Understand the chemical engineering processes in chemical processes.
CO2	Identify unit operations & processes of chemical engineering processes.
CO3	Determine the chemical engineering processes' pollutant sources.
CO4	Discuss health & safety related issues of chemical engineering processes.

4th semester

Course Name: - Environmental Microbiology and Bioremediation

Subject Code: -23110401

Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Identify techniques to enumerate microbes.
CO2	Explain the structure of microbes and how they relate to the environment.
CO3	Compare the physical & chemical agents for control of microbes.
CO4	Discuss the principles of bioremediation for treatment of soil, wastewater & ground water.

Course Name: - Basics of Environmental Hydraulics

Subject Code: -23110402

СО	After the completion of the course the student should be able to
CO1	Relate the properties of fluids with context of environmental hydraulics.

CO2	Examine the application of hydrostatics, kinematics, dynamics and flow measurement
	techniques.
CO3	Solve the problem relate to flow through pipes and channels for conveyance.
CO4	Identify filed application of orifices, weir and notches in environmental.

Course Name: - Fundamentals of Wastewater Quality

Subject Code: -23110403

СО	After the completion of the course the student should be able to
CO1	Solve the numerical based on the concept of equilibrium chemistry.
CO2	Apply the concept of physical chemistry and colloidal chemistry to solve the environment problem.
CO3	Correlate the concept of organic chemistry with the environment and the biodegradation of organic matter.
CO4	Identify filed application of orifices, weir and notches in environmental.

5th semester

Course Name: - Advanced Environmental Instrumentation

Subject Code: -24100501

Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Show that you can use a high-tech analytical instrument to measure contaminants at the micro level.
CO2	Demonstrate the ability to use and calibrate analytical tools such as an Ion selective meter and TOC analyzer.
CO3	Analyze the data using statistical methods.
CO4	Apply the instrumental analysis method.

Course Name: - Physico - Chemical Treatment Technologies

Subject Code: -24100502

СО	After the completion of the course the student should be able to
CO1	Choose the most effective amount of chemical coagulation and disinfectants.
CO2	Relate the parameter with types of treatment required and identify the type of treatment required.
CO3	Identify the physical and chemical treatment units.
CO4	Evaluate the removal efficiency of physic-chemical treatment units.
CO5	Justify the type of disinfection process for treatment of water.

Course Name: - Municipal and Industrial Solid Waste Management

Subject Code: -24100503

CO	After the completion of the course the student should be able to
CO1	Understand solid waste's predicament and the useful component of a system for managing hazardous and solid waste.
CO2	Classify the sources, types, composition and quantities of solid waste.

CO3	Identify the physical, biological and chemical properties of solid waste.
CO4	Take measure to collection, transfer, transport, separated and process of solid and
	hazardous waste.
CO5	Evaluate the issues and aspects of solid waste recycling and composting.
CO6	Use of incineration for disposal of solid waste. Design aspect related to land disposal
	and hazardous waste.

Course Name: - Municipal Engineering

Subject Code: -24100504

СО	After the completion of the course the student should be able to
CO1	Identify the source of water and evaluate resource in term of quantity and quality.
CO2	Identify the type of sewers and sewer appurtenances.
CO3	Determine the water demand by projecting future population growth.
CO4	Plan the components of water supply scheme including pipe network, distribution system, valves and fitting.
CO5	Determine the amount of storm and sanitary sewage.

CO6 **Design** the components of sewer system.

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

6th semester

Course Name: - Biological Processes For Wastewater Treatment

Subject Code: -24100601

СО	After the completion of the course the student should be able to
CO1	Apply fundamental concepts of microbiology in biological treatment process of waste water.
CO2	Develop the reaction rate kinetics for biological treatment.
CO3	Determine the size of the biological treatment units.
CO4	Determine the amount of organic pollutants that are found in waste water.
CO5	Give differences between aerobic and anaerobic treatment, process suspended growth and attached growth process.
CO6	Create a system on-site that includes pack edge treatment plants and a septic tank.

Course Name: - Environmental Resources

Subject Code: -24100604

Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Utilize and arrange environmental resources sustainably and optimally.
CO2	Disseminates learnt information related to subject orally and in written from through presentation and report.
CO3	Utilize population theories and various population forecasting formulas to project the population.
CO4	Discuss the concern and appreciate importance of depletion of resource and their sustainability.

Course Name: - Ground water contamination

Subject Code: -24100605

СО	After the completion of the course the student should be able to
CO1	Explain the groundwater conservation mechanisms.
CO2	Apply the laws of ground water hydraulic and solve the difference equation for different types of aquifer.
CO3	Identify the resource of ground water contaminate and suggest the remedial and preventive measures to overcome ground water contaminate.
CO4	Utilize the groundwater flow models and implement them to reduce or eliminate contamination of groundwater and its conveyance.

Course Name: - Fundamentals of air pollution

Subject Code: -24100603

СО	After the completion of the course the student should be able to
CO1	Relate the various atmospherics stability condition with different plume behaviors.
CO2	Relate historic air pollution events, air quality legislation and relevant international protocols.
CO3	Develop plans to monitor, control, and reduce pollution.

CO4	Examine the effects of air pollution on materials, vegetation, and human health.
CO5	Determine the relative concentrations of various air pollutants in ambient air and stack gases.
CO6	Calculated the atmospheric dispersion of discharge from both point and area side sources.

Course Name: - Design of water treatment unit

Subject Code: -24100602

CO	After the completion of the course the student should be able to
CO1	Choose the flow measuring device.
CO2	Identify the source of water and select the treatment scheme based on the source selected.
CO3	Identify the different type of aeration system, rapid mixers, and flocculation and choose the relevant type for water treatment.
CO4	Decide the layout and hydraulic profile of water treatment plants.
CO5	Design sedimentation tank, clariflocculator, and filtration system and disinfection units for conventional water treatment plan.

CO6 Prepare a detailed working drawing of the **designed** units and **Design** treatment units for special water treatment.

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

7th semester

Course Name: - Resource and energy Recovery from waste

Subject Code: -2410704

Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Understand the fundamental principle of existing and emerging technologies for the treatment of waste to recover of materials and generated of energy from waste.
CO2	Understand the process of generation of energy from waste through biochemical conversion.
CO3	Understand the process of thermo-chemical conversion of waste to energy.
CO4	Analysis and describe the potential of solid waste as a secondary raw material and the associated problem and possibilities in sustainable society.

Course Name: - Advanced wastewater treatment technology

Subject Code: -2410701

СО	After the completion of the course the student should be able to
CO1	Compare the most appropriates types of membrane processes for advanced treatment of wastewater.
CO2	Discuss method of advanced treatment technologies for pollutant removal particularly nitrogen & phosphorous from wastewater.
CO3	Recommend advanced oxidation process and electrochemical processes to treat concentrated wastewater.
CO4	Explain the concept of advance treatment processes like adsorption, ion exchange for removal of pollutants.

Course Name: - Design of Air Pollution Control Equipment

Subject Code: -2410702

СО	After the completion of the course the student should be able to
CO1	Learnt about Major sources of air pollution in India.
CO2	Describe in detail the tools and principles for enhancing indoor air quality.

CO3	Give a detailed explanation of the air pollution control systems' impact on human
	health and the environment.
CO4	Classification and characteristics of air pollutants.
CO5	Design and operation of particulate control devices (cyclones, electrostatic
	precipitators, bag houses).

Course Name: - Environmental Risk Assessment and Management

Subject Code: -2410703

СО	After the completion of the course the student should be able to
CO1	Learn about strategies for engaging stakeholders and communicating risks effectively.
CO2	The importance of environmental risk assessment and management in environmental engineering is explained in detail.
CO3	Evaluate community resilience and vulnerabilities in the Indian context.
CO4	Evaluated Role of EIA in assessing and managing environmental risks.
CO5	Analysis the Public awareness and participation in risk management in India.
CO6	Explain EIA processes and practices in India.

Course Name: - Cleaner Production and Waste Utilization

Subject Code: -2410705

СО	After the completion of the course the student should be able to
CO1	Learn about the different types and sources of waste produced by different processes and industries.
CO2	Explain the procedures for characterizing and measuring waste.
CO3	Describe the fundamentals of resource efficiency and cleaner production.
CO4	Identifying opportunities for waste reduction and improved efficiency.
CO5	Describe the concepts of life cycle assessment and how they contribute to cleaner production.
CO6	Explain the Conducting LCA and interpreting results for decision-making in India.

8th semester

Course Name: - Environmental Impact Assessment

Subject Code: -2410801

Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Understand the different steps within environmental impact assessment.
CO2	Explain the effects of the current institutional and jurisdictional setups on environmental impact assessments
CO3	Understand how to liaise with and the importance of stakeholders in the EIA process.

Course Name: - Anaerobic Biological Treatment Technologies

Subject Code: -2410802

CO	After the completion of the course the student should be able to
	the man from the Contract States to

CO1	Understand Historical development and key challenges in India.
CO2	Give a thorough explanation of microbial ecology in anaerobic processes
CO3	Recognizing anaerobic systems (such as anaerobic lagoons, CSTR, and UASB).
CO4	Biogas utilization for energy generation and its applications in India.
CO5	Understanding Anaerobic treatment in various industrial sectors (e.g., agro-processing, food, and beverage).
CO6	Evaluation of the viability and economics of anaerobic digestion initiatives in India.

Course Name: - Industrial Wastewater Pollution and Control

Subject Code: -2410803

CO	After the completion of the course the student should be able to
CO1	Understand Significance of industrial wastewater pollution control in environmental engineering.
CO2	Remembering Types and characteristics of industrial wastewater.
CO3	Choosing treatment methods according to the properties of wastewater.

CO4	Understand the regulatory requirements in India for the pre-treatment of industrial wastewater.
	waste water.
CO5	Identify Wastewater pollution and control practices in various industrial sectors (e.g.,
	chemical, textile, food and beverage).
CO6	An outline of the standards and laws pertaining to the management of industrial
	wastewater.

Course Name: - Preventive Environmental Management

Subject Code: -2410804

Learning Outcomes:

СО	After the completion of the course the student should be able to
CO1	Recognizing India's historical development and major issues.
CO2	Identify the Environmental risk assessment methodologies and tools.
CO ₃	Applying the EIA's role in evaluating and controlling possible environmental effects.
CO4	An outline of the standards and laws pertaining to the prevention of environmental degradation.
CO5	Illustrate to EMS and ISO 14001 standards.

Course Name: -**Environmental**

legislation and audit

Subject Code: -2410805

СО	After the completion of the course the student should be able to
CO1	Show that you understand the environmental protection provisions of the constitution.
CO2	Identify the Assistance the industries receive in order to comply with environmental regulations and laws.
CO3	Discuss the industries in obtaining the clearance for starting new project.
CO4	Apply the knowledge of ISO 14000 for obtaining certificating.
CO5	Discuss the environmental audit of the industries as per the requirement of current environmental laws.

SWARRNIM STRATUP & INNOVATION UNIVERSITY SWARRNIM INSTITUTE OF TECHNOLOGY

B.TECH CHEMICAL ENGINEERING

SEM 3rd

Course: Organic Chemistry and Unit Process

Subject code: 23020303

Course outcome:

No.	Outcome
CO1	Understand the fundamentals and define the mechanism for the reaction types like
COI	substitution, addition, elimination, condensation, hydrolysis, oxidation and reduction
CO2	Understand the impact of organic chemistry in the fields of chemical industries,
COZ	pharmaceutical industries and its impacts on the global economy
CO3	To build a basic knowledge of the Fundamental structure of Organic molecules and
003	know the synthesis, properties and applications of organic compounds.
CO4	Comprehend and analyze organic molecule by performing different test and also acquire
204	the knowledge of material safety data for the same.
CO5	To analyze scientific concepts and think critically and to understand and explain the
	reactions in Organic molecules
CO6	To discuss the same as per their utility in field of Chemical Engineering.

Course: Fluid Flow Operations

Subject code: 23020304

Course outcome:

No.	Outcome
CO1	Define principles of fluid mechanics operations
CO2	Explain the theoretical importance and relevance of fluid flow in chemical process industry
CO3	Identify and apply the theoretical concept of fluid flow in chemical process industry
CO4	Comprehend and analyze fluid mechanics problems with the application of conservation principles of mass, energy and the momentum
CO5	Evaluate fluid mechanics problems with the application of conservation principles of mass, energy, momentum.
CO6	Design fluid transportation systems such as pumps, compressors and pipe network etc, and choose the fluid transportation devices for process applications.

Course: Process Calculation

Subject code: 23020301

No.	Outcome
CO1	Recall and choose the correct unit conversions and dimensions for different variables for chemical calculations
CO2	Relate the stoichiometry in material and energy balances for different unit operations and processes
CO3	Solve the material balances of process system with and w/o reactions including recycle / bypass operations
CO4	Examine the system and estimate the different forms of energy available and make energy balances
CO5	Assess the combustion process and decide the air requirement and estimate the heating

	values of fuel
CO6	Elaborate the understanding of a chemical process and build the mass and energy requirements of the process.

Course: Chemical Process Industries-I

Subject code: 23020302

Course outcome:

No.	Outcome
CO1	Define and select basic raw materials used for processes carried out in chemical industry.
CO2	Illustrate process flow diagrams/process block diagrams for the manufacture of various chemicals from process description.
CO3	Identify different unit operations and unit processes involved in a process.
CO4	Analyze the technological methods in problem solving in process plant.
CO5	Recognize the importance of process economics in the industry.
CO6	Discuss the impact of the professional engineering solutions for societal benefits.

SEM 4th

Course: Physical and Inorganic Chemistry

Subject code: 23020402

No.	Outcome
CO1	

CO2	Explain the different reactions & kinetics of reaction
CO3	To build a basic knowledge of the structure of Physical and inorganic chemistry.
CO4	To analyze scientific concepts and think critically.
CO5	To review the importance and relevance of chemistry in our everyday life.
CO6	To be able to utilize the methods of chemical science as a logical means of problem solving

Course: Chemical Engineering Thermodynamics-I

Subject code: 23020403

Course outcome:

No.	Outcome
CO1	Choose and apply of laws of Thermodynamics and its application to different processes.
CO2	Explain the Pressure-Volume-Temperature relationship and equilibrium condition in pure fluid and fluid mixtures.
CO3	Solve ideal work, lost work, thermal efficiency and/or thermodynamic efficiencies of processes.
CO4	Analyze thermodynamic properties, partial properties of a mixture in the ideal-gas state.
CO5	Evaluate molar volume, compressibility factor, density, using different cubic equation of states and models.
CO6	Estimate fugacities and fugacity coefficients of pure species from PVT data or generalized correlations.

Course: Process Heat Transfer

Subject code: 23020404

No.	Outcome
CO1	Define the basic principles of heat transfer operations, related to different mode of heat transfer.
CO2	Explain the principles of heat transfer operations involving conduction, convection, radiation including phase change.
СОЗ	Apply principles of heat transfer operations involving conduction, convection, radiation including phase change.
CO4	Analyze the problems related to conduction, convection and radiation involving heat exchanger, evaporators and condensers.
CO5	Justify the applications of theory learned in industrial practices regarding conduction, convection and radiation involving heat exchanger, evaporators and condensers.
CO6	Design heat transfer equipments based upon the conditions given in the problem statement.

Course: Chemical Process Industries-II

Subject code: 23020401

Course outcome:

No.	Outcome
CO1	To define a basic knowledge of the process carried out in chemical industry.
CO2	To understand the fundamentals of manufacturing different kinds of chemicals
CO3	To be able to utilize the technological methods in problem solving in process plant.
CO4	To review the practical importance and relevance of process takes place in chemical industry.
CO5	To explain the salient features of the processes.
CO6	To build a bridge between theoretical and practical concepts used in industry.

SEM 5th

Course: Chemical Engineering Thermodynamics-II

Subject code: 23020501

Course outcome:

No.	Outcome
CO1	Define bubble point, dew point, Azeotrope and flash condition in vapour -liquid system
CO2	Compute phase equilibrium data and interpret P-x-y, T-x-y diagram for ideal vapour-liquid systems.
CO3	Identify dew point and bubble point surfaces, the critical locus, and pure species vapor-pressure curves that make up a vapor/liquid phase envelope when presented in a <i>PT xy</i> diagram.
CO4	Analyzephase equilibrium using activity coefficient models and/or Equation of state models.
CO5	Determine equilibrium composition of a mixture of gases undergoing one or more chemical reactions
CO6	Estimate equilibrium conversion in reversible reactions and solve problems related to reaction equilibria.

Course: Mass Transfer Operation-I

Subject code: 23020502

No.	Outcome
CO1	Define the basic principles of diffusion, mass transfer theories and interphase mass transfer
CO2	Explain the principles of diffusion and mass transfer operations like distillation,
	absorption and stripping

CO3	Apply principles related to diffusion, distillation, absorption and stripping.
CO4	Analyze the problems related to diffusion, distillation, absorption and stripping
CO5	Justify the applications of theory learned in industrial practices regarding diffusion, distillation and absorption.
CO6	Design columns related to diverse mass transfer operations like distillation, absorption and stripping.

Course: Instrumentation and Process Control

Subject code: 23020503

Course outcome:

No.	Outcome
CO1	Defining and identifying dynamical processes and their block diagram representation using transfer functions
CO2	Explain Laplace transforms, inverse Laplace transforms of various signals, and, expressing response of first and second order processes using Laplace transformation
CO3	Develop the knowledge of Process control with Instrumentation with main focus on various sensors such as flow, pressure and temperature sensors.
CO4	Integrating complex block diagram systems to a simple form and examining the controller actions such as Proportional (P), Proportional-integral (PI) and Proportional-integral-derivative (PID).
CO5	Explaining the stability of control processes and estimating the stability by Routh's test and tuning of controllers using stability criterion
CO6	Measuring frequency response problems and predicting stability in frequency domain by means of Bode plots.

Course: Mechanical Operation

Subject code: 23020504

No.	Outcome
CO1	Choose the techniques of mechanical operations to meet the need of chemical Industries.
CO2	Understanding fluid flow through packed and fluidized beds.
CO3	Able to identify the different types of mixing, agitation and conveying of solids and estimating the power requirement.
CO4	Ability to classify suitable size reduction equipment and solid-solid separation method.
CO5	Determination of the static and dynamic principles of separation for ores in chemical industries.
CO6	Design of filtration equipment by considering constant and variable pressure governing equations.

Course: Fundamental of Chemical Engineering Unit Operation (Elective 1)

Subject code: 23020504

No.	Outcome
CO1	Define chemical process industries, the roles of chemical engineers and their ethical practices.
CO2	Understand the concepts of various unit operation, their mode of operation and applications.
CO3	Application of computational tools (excel/c programming) to solve problems pertaining to process industries.
CO4	Systematically analyze the process flow diagrams and piping& instrumentation diagrams of industry.
CO5	Evaluation of problems relevant to ideal and real gases.
CO6	Estimation of various physico-chemical properties using appropriate mathematical

approaches.

SEM 6th

Course: Mass Transfer Operation-II

Subject code: 23020602

Course outcome:

No.	Outcome
CO1	Define the basic principles of mass transfer operations like extraction, adsorption, humidification, dehumidification and drying.
CO2	Explain the principles of mass transfer operations like extraction, adsorption, humidification, dehumidification and drying.
CO3	Apply principles related to extraction, adsorption, humidification, de-humidification and drying.
CO4	Analyze the problems related to extraction, adsorption, humidification, dehumidification and drying.
CO5	Justify the applications of theory learned in industrial practices regarding extraction, adsorption, humidification, and dehumidification and drying.
CO6	Design mass transfer equipments based upon the conditions given in the problem statement.

Course: Process Equipment Design-I

Subject code: 23020601

No.	Outcome
CO1	Define the basics of chemical process equipment design
CO2	Explain the sizing calculations of pipes, heat transfer and mass transfer equipment
CO3	Apply the fundamental understanding the complexity of the design
CO4	Analyze critically the design criteria for the optimum design
CO5	Recommend the international standards, fabrication and testing methods
CO6	Design the various equipments used in chemical process industries.

Course: Pollution Control and Safety Management

Subject code: 23020604

Course outcome:

No.	Outcome
CO1	Define the safety principles & standards, loss statistics, toxic substance & hazard and industrial hygiene.
CO2	Classify measures to diminish risk and execution of safety and industrial hygiene.
CO3	Apply knowledge in risk analysis through FTA, ETA, QRA, LOPA and BTA.
CO4	Examine industrial safety & hygiene identification, evaluation and control
CO5	Assess characteristic sources of risk in a process plant by learning from case studies
CO6	Estimate fire & explosion hazard and their evaluation and prevention & control.

Course: Chemical Reaction Engineering - I

Subject code: 23020605

No.	Outcome

CO1	Relate to the basics of kinetics and basic theories to get the underlying mechanisms
CO2	Interpret and evaluate the rate data and get the kinetics parameters
CO3	Select proper design equations and perform reactor sizing for ideal reactors
CO4	Examine the suitable combinations of ideal reactors for optimal performance
CO5	Decide the reactor sequencing for single and multiple reactions towards desired products
CO6	Design ideal reactor systems based on experimental data and optimize its performance.

Course: Advanced Separation Techniques

Subject code: 23020606

Course outcome:

No.	Outcome
CO1	Define the basic principles of different separation processes.
CO2	Explain the complete details including problem-solving approach and the applications of theory learned regarding SFE, Membrane Separation, Surfactant Based separation and other separation processes.
CO3	Apply the principles of separation processes like SFE, Membrane Separation, Surfactant Based separation and other separation processes.
CO4	Analyze the problems related to SFE, Membrane Separation, Surfactant Based separation and other separation processes.
CO5	Estimate desired separation from the give separation processes.
CO6	Design separation modules based upon the conditions given in the problem statement.

Course: Biochemical Engineering

Subject code: 23020603

No.	Outcome
CO1	Define various mass transfer and reaction engineering aspects of enzyme inhibition and immobilization
CO2	Illustrate the different mechanism of separation of soluble and insoluble biochemical products
CO3	Identify and outline the various modelling strategies to express the kinetics of enzyme catalyzed reaction.
CO4	List the various applications of biochemical engineering in allied chemical and energy sector
CO5	Determine the various reactor configurations as well as to implement the design fundamentals of bioreactors.
CO6	Discuss the conversion processes of the various industrially important biochemical products.

SEM 7th

Course: Process Equipment Design-II

Subject code: 24020701

No.	Outcome
CO1	Define mass transfer, heat transfer and unit operation subjects which are learned in the previous semester
CO2	Create understanding of equipment design with mechanical concept.
CO3	Build a bridge between theoretical and practical concepts used for designing the

	equipment in any process industry.
CO4	Analyze the various physical properties, design parameters and solutions for designing of equipments
CO5	Review the importance of design concepts in process industry.
CO6	Design process equipment and modify the design of existing equipment to new process conditions or new required capacity

Course: Chemical Reaction Engineering-II

Subject code: 24020702

Course outcome:

No.	Outcome
CO1	Relate to the basics of non ideality and characteristics of residence time distributions
CO2	Interpret the RTD profiles and experimental data to model the non ideal reactors
CO3	Select proper reaction mechanism and design the catalytic reactor by rate data analysis
CO4	Compare the reactor performance with or w/o internal of external mass transfer limitations
CO5	Appraise the performance of different reactors in multi phase systems
CO6	Design, Develop and/or Modify reactor systems for specific purpose of real life problems

Course: Energy Technology (Elective-I)

Subject code: 24020706

No.	Outcome
CO1	List the available renewable and non-renewable energy resources and relate to fulfill global energy demand.

CO2	Summarize the various characterization techniques used in solid and liquid fuels
CO3	Execute the effective utilization of potential conventional energy source by advanced
	conversion technologies
	č
CO4	Analyze the potential utilization of biomass and bio-fuels as a substitute for the fossil
	fuel applications
CO5	Assess the available non-conventional (renewable) energy resources and techniques to
	utilize them effectively.
CO6	Facilitate the design and applications of related devices using renewable energy sources.

Course: Computer Aided Process Synthesis

Subject code: 24020703

No.	Outcome
CO1	Choose and apply blocks and streams from a simulators library to make a process flow sheet
CO2	Understand, create, select, and describe computer tools for chemical process simulation
CO3	Apply stream and block parameters to a chemical unit operation for computer simulation
CO4	Analyze process intensification and construct Heat exchanger networks and develop the pinch design approach to develop a network
CO5	Determine flow sheeting solution by using design specification and sensitivity analysis approach
CO6	Solve process design and simulation calculations of various unit operations using Aspen software

Course: Plant Design and Project Engineering

Subject code: 24020704

Course outcome:

No.	Outcome
CO1	Choose appropriate process for a project and to learn basic economic concept, to understand and apply this concepts in the project works undertaken and to chemical engineering situation by solving problem
CO2	Understand piping and instrumentation diagram.
CO3	Organize the primary techno-economic feasibility of project.
CO4	Categorize the equipment and able to prepare specification sheet.
CO5	Evaluate the project cost including capital investment, product cost, breakeven point, depreciation cost for equipment and the total project cost.
CO6	Plan the control and schedule of the project using CPME/PERT technique, calculations, problem on profitability and replacement analysis.

SEM 8th

Course: Solid Fluid Operation

Subjectcode: 24020805

No.	Outcome
CO1	Define solid fluid operations in chemical industries.

CO2	To understand the principles behind different solid - fluid operations.
CO3	Apply knowledge to make students understand the global scenario and requirement of solid fluid operations and advancement in the same field.
CO4	To analyze the variety of application of solid fluid operations in chemical industries.
CO5	To make student realize the importance of design related problems in solid-fluid operations in chemical industries
CO6	Modify the design or can suggest the changes required for better operation in terms of economy and efficiency

Course: Fertilizer Technology

Subject code: 24020804

Course outcome:

No.	Outcome
CO1	Choose reactions and unit operations steps in manufacturing of various fertilizers
CO2	Classify fertilizers on the basis of different properties
CO3	Identify engineering problems in fertilizer manufacturing.
CO4	Categorize the equipment used for storage and handling of fertilizers
CO5	Explain the need and importance of fertilizer
CO6	Discuss the initiatives and schemes of Central/State Governments towards fertilizers

Course: Chemical System Modeling

Subject code: 24020803

No.	Outcome
CO1	Choose process models based on conservation principles and process data.
CO2	Explain the chemical processes, different parts of the processes and unit operations.
CO3	Have an understanding of computational techniques to solve the process models.
CO4	Use economics to derive an objective function and analyze principles of engineering to develop equality and inequality constraints.
CO5	Choose various optimization techniques as a tool in process design and operation for optimizing important industrial processes
CO6	Get familiar with the preferred software packages and optimization techniques ASPEN PLUS, GAMS, HYSIS, CHEMCAD and MATLAB to solve linear programming and nonlinear programming problems which will make them ready for industry

Course: Petroleum Refining & Petrochemicals

Subject code: 24020802

No.	Outcome
CO1	Choose purification and fractionation process of crude oil
CO2	Outline the crude composition, properties and characterization methods of different petroleum fractions.
CO3	Identify the process technology of product upgradation units and Hydrogen processes.
CO4	Compare the different conversion processes of the heavier fractions by cracking and coking technology
CO5	Interpret the treatment processes for preparing finished products using chemical or physical separation
CO6	Design the process technology of various important petrochemicals products.

Course: Process Simulation & Optimization

Subject code: 24020803

Course outcome:

No.	Outcome
CO1	Relate the important physical phenomena from the problem statement, various types of
	models such as empirical models, hybrid models etc.
CO2	Translate chemical process systems into mass balance, energy balance and momentum
CO2	balance formulations
	Develop model equations for the given system, demonstrate the model solving ability
CO3	for various processes/unit operations, develop various models for various systems such
	as reactor, distillation column, heat exchangers and analyze their behavior.
CO4	Be able to theoretically examine different types of optimization problems.
CO5	Assess the utilization of different optimization techniques.
CO6	Ability to solve various multivariable optimization problems.

Course: Nano-Technology (Elective-I)

Subject code: 24020707

No.	Outcome
CO1	Define the nano-materials
CO2	Classify the appropriate nano-materials
CO3	Choose various synthesis and processing methods for nano-materials
CO4	Analyze and Identify nano-materials for engineering applications

CO5	Explain the role of nanotechnology in various engineering disciples
CO6	Develop new techniques for the synthesis of nanomaterials

INDIA'S FIRST UNIVERSITY FOR STARTUP

SWARRNIM STARTUP & INNOVATION UNIVERSITY SWARRNIM INSTITUTE OF TECHNOLOGY ENVIRONMENTAL ENGG

M.TECH

1st semester

Course Name: - Application based system for transport of water & wastewater

Subject Code:-24020101

Learning Outcomes:

CO After the completion of the course the student should be able to

CO1 The student will be able to choose from a variety of pipe materials for the main water supply, distribution network, and sewer after completing the course.

CO2 The student will be able to design the main water supply, distribution network, and sewer for a variety of field scenarios upon completion of the course.

CO3 On Completion of the Course the student will Troubleshooting in water and sewage transmission be able to use various computer software for the design of water and sewage network.

Course Name: - Environmental Chemistry And Microbiology

Subject Code:-24020102

CO After the completion of the course the student should be able to

- Master a broad set of chemical knowledge concerning the fundamentals in the basic areas of the discipline (organic, inorganic, analytical, physical and biological chemistry).
- CO2 Demonstrate that microorganisms have an indispensable role in the environment, including elemental cycles, biodegradation, etc.

Course Name: - Water &wastewater technology

Subject Code:-24020104

Learning Outcomes:

- CO-1: Water's properties will be possible to be analyzed by students.
- CO-2: To able design intake structure for collection of water from various sources of water.
- CO-3: The ability to design aeration, sedimentation, coagulation, and filtration tanks will be granted by students.
- CO-4: The ability to design units for de-fluoridation, softening, fluoridation, and disinfection will be granted to students.
- CO-5: Research on water treatment at the bench scale and in pilot plants will be assessed by students.

CO-6: It will be possible for students to create different rural water system units.

Course Name: - Environmental impact Assessment

Subject Code:-24020103

Learning Outcomes:

CO-1: Classifying and discussing the composition and roles of ecosystems will be possible for students.

CO-2: Explain synergistic and symbiotic interactions by student.

CO-3: Demonstrate the significance of biogeocycles. Utilize models of ecosystems.

Course Name: - Advances in environmental laboratories

Subject Code:-24020103

Learning Outcomes:

CO1- Mable to assess quality of environment

2nd semester

Course Name: - Industrial water & wastewater treatment

Subject Code:-24020201

Learning Outcomes:

CO-1 Learn physical/chemical/biological characteristics of and the evaluation technique for various industrial wastewater.

CO2- Understand the theory, engineering application, and design technique for the industrial wastewater treatment unit processes.

Course Name: - Air Pollution and Control

Subject Code:-24020202

Learning Outcomes:

CO-1 Classify sources and effects of air pollution

CO-2 Explain impact of meteorological parameters and various control measures for air pollution

CO-3 Illustrate the working mechanisms of various air pollution control equipment.

CO-4 Make use of various mathematical models for solving problems related to dispersion and control of air pollutants.

Course Name: - Industries hygiene and safely

Subject Code:-24020203

Learning Outcomes:

At the completion of this course, students should be able to

- CO-1 Management of Safety in work places
- CO -2 Understand the Behavior aspects of workers
- CO-3 Will be able to give Safety education and train the workers.
- CO-4 Able to calculate direct and indirect costs.
- CO-5 Can act as a bridge between Management and Workers

Course Name: - Solid and hazardous waste management

Subject Code:-24020204

Learning Outcomes:

- CO-1 Explain sources, composition & generation rate of solid waste.
- CO-2 Choose proper treatment & disposal for solid waste.
- CO-3 Select appropriate procedures for construction and operation of sanitary landfill.
- CO-4 Explain sources, characteristics & associated risk of the hazardous waste.
- CO-5 Choose proper treatment disposal for hazardous waste.
- CO-6 Recall the legislative procedures for various solid waste.

Course Name: - Environmental Monitoring

Subject Code:-24020205

Learning Outcomes:

- CO-1 Role of environmental monitoring in environmental engineering.
- CO-2 Types of sampling (grab, composite, continuous).
- CO-3 Selection of appropriate sampling methods and equipment.
- CO-4 Data collection in various environmental media (air, water, soil).
- CO-5 Data storage, analysis, and reporting.

Course Name: - Membrane technology

Subject Code:-24020206

Learning Outcomes:

- CO-1 Definition and significance of membrane technology in environmental engineering.
- CO-2 Classification of membranes (microfiltration, ultrafiltration, nanofiltration, reverse osmosis).
- CO-3 Membrane materials, properties, and selection criteria.
- CO-4 Analysis of real-world projects and applications of membrane technology in India.

Course Name: - Climate change

Subject Code:-24020207

Learning Outcomes:

- CO-1 Measure climate factors and how they change.
- CO-2 Understand connections between global warming and human activities.
- CO-3 Identify effects of climate change on biodiversity and ecosystems in different biomes and aquatic systems.
- CO-4 Model possible scenarios for future climate change.
- CO-5 Achieve possible ways to deal with climate change.

3rd semester

Course Name: - Treatment process design and drawing

Subject Code:-24020301

Learning Outcomes:

- CO-1 Upon successful completion of this course, students will be able to
- CO-2 Design various environmental structures like water treatment plants, waste water treatment systems.
- CO-3 Design air pollution control equipment

Course Name: - Air Pollution control equipment

Subject Code:-24020302

Course Objectives:

- CO-1 Understand the principles and significance of air pollution control in the field of environmental engineering.
- CO-2 Demonstrate knowledge of various types of air pollution control equipment and their working principles.
- CO-3 Develop skills in the selection, design, and operation of pollution control systems for different pollutants.
- CO-4 Analyze and evaluate the performance of air pollution control equipment for specific contaminants.
- CO-5 Apply regulatory and compliance standards to design and operate pollution control systems in India.
- CO-6 Appreciate the economic and sustainability aspects of air pollution control.

4th semester

Course Name: - Environmental Legislation & management

Subject Code:-24020401

Learning Outcomes:

- CO-1 Describe the relevant sections of Indian Penal Code and Criminal Procedure Code for Environmental Protection.
- CO-2 Discriminate the power & functions of regulatory agencies.
- CO-3 To understand the roles, responsibilities of Air Act.
- CO-4 To understand the roles, responsibilities of Environmental Act.
- CO-5 Draft writ petitions and Public Interest litigation

Course Name: - Energy Source & their Environmental Impact

Subject Code:-24020402

Course Objectives:

- CO-1 Understand the various energy sources and their role in meeting the energy demands in India.
- CO-2 Assess the environmental impact of different energy sources, considering air quality, water resources, land use, and climate change.
- CO-3 Evaluate the economic, social, and policy implications of energy source choices.
- CO-4 Analyze and compare the sustainability and efficiency of renewable and non-renewable energy technologies.
- CO-5 Develop the ability to propose environmentally sustainable energy solutions for specific Indian contexts.
- CO-6 Comprehend the regulatory and policy framework related to energy sources and environmental impact in India.

Swarrnim Institute of Technology

PROGRAM NAME: Bachelor of Technology in Automobile Engineering

Semester-I

Subject Name: Maths-I Subject Code: 23000001 Course Outcomes (COs):

CO1	Analyze and manipulate infinite sequences and series.
CO2	Evaluate limits involving indeterminate forms.
CO3	Understand and apply techniques for improper integrals.
CO4	Analyze functions of several variables and solve optimization problems.
CO5	Solve systems of linear equations using matrices and determinants.
CO6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.

Subject Name: Fundamentals of Computer Programming

Subject Code: 23000004 Course Outcomes (COs):

CO1	Apply fundamental principles of problem solving in software engineering.
CO2	Apply basic programming principles using C language.
CO3	Apply basic C program structure in software development
	Prepare graduates for professional careers in roles including, but not limited to, the
CO4	following: computer programmer, software engineer, software systems designer, software
CO4	applications developer, technical software project lead, computer systems analyst, computer
	systems programmer, software applications tester and maintainer.
CO5	To prepare graduates with the knowledge and skills to do advanced studies and research in
COS	computer science and related engineering and scientific disciplines
	To equip graduates with the communication skills, both oral and written, to become an
CO6	effective team-oriented problem solver as well as an effective communicator with
	nontechnical stakeholders in computer and software systems development, maintenance and
	administration.

Subject Name: Elements of Electrical Engineering

Subject Code: 23000012 Course Outcomes (COs):

CO1	Define electrical current, potential difference, power and energy, sources of electrical energy,
	resistance and its behavior with temperature.
CO2	Understand the different types of wires, cables, connectors & amp; switches used for wiring
	Different types of domestic and industrial wiring.
CO3	Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
CO4	Analyze the steady state behavior of single phase and three phase AC electrical circuits.
CO5	Compare various protective devices of working principle, usage and construction such as fuse,
	MCB, ELCB & amp; Relays.
CO6	Design and development of varies Electrical Wiring and electronics miniproctes.

Subject Name: Elements of Mechanical Engineering

Subject Code: 23000003 Course Outcomes (COs):

CO1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO2	Make calculations for commonly used working fluids i.e. ideal gases and steam.
CO3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO4	Discuss working and applications of steam boilers and various energy conversion systems.
CO5	Discuss various power transmission elements and properties of various engineering materials with their applications.

Subject Name: Environmental Studies

Subject Code: 23000006 Course Outcomes (COs):

CO1	Describe natural resources, importance of ecosystem and conservation of biodiversity with
	respect to multiple disciplines.
CO2	Explain causes, effects, solutions for various pollution problems and its minimization
	strategies.
CO3	Differentiate between requirements of laws and regulations for environmental conservation
	and applicability of legislations in society and industries.
CO4	Discuss environmental ethics and their implementation for betterment of environment and
	human life.

Subject Name: Orientation Program in Startuo and Entreprenuirship

Subject Code: 12300001 Course Outcomes (COs):

CO1	Apply the basic principles of entrepreneurship
CO2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and
	various entrepreneurial opportunities.
CO3	Understanding various individual attributes of entrepreneurial personality traits,
	entrepreneurial characteristics, behavioural attributes and importance of creativity and
	innovation.
CO4	Develop an understanding of best techniques for idea generation and opportunities
	exploration.

Subject Name: Workshop Subject Code: 23000029 Course Outcomes (COs):

CO1	Understand applications of hand tools and power tools and operations of machine tools.
CO2	Understand the operations of machine tools.
CO3	Select the appropriate tools required for specific operation.
CO4	Comprehend the safety measures required to be taken while using the tools.
CO5	Prepare Fitting, Carpentry, Plumbing, Welding ,and Tin-smithy Jobs.

Semester-II

Subject Name: ENGINEERING PHYSICS

Subject Code: 23000005 Course Outcomes (COs):

CO1	To acquire knowledge of calculus which are integral part of any branch of Physics
CO2	Students learn accurately how to describe motion of objects, planetary motions,
CO2	gravitation etc. Understand the motion of objects in different frame of references
CO3	To learn about basic concepts of electrical charges and currents and their properties
CO4	Student learn about various types of waves and their propagation.
CO5	To understand the principle of calorimetry
CO6	To know about Radiation and its nature, old quantum theory, concept of wave-particle
COO	duality and de Broglie hypethesis.
	To study complex analysis, Cauchy Riemann conditions, Analyticity, Cauchy Integral
CO7	formula, Laurent and Taylor series expansion and definite integrals using contour
	integration.

Subject Name: COMMUNICATION SKILLS

Subject Code: 23000008 Course Outcomes (COs):

CO1	Students will become master of four communication skills.
CO2	They feel confident in speaking and writing English language.
CO3	Students will be able to improve the language skills i.e. Listening Skill, Speaking Skill, Reading Skill, and Writing Skill (LSRW).
CO4	To make them learn about life skills and soft skills.

Subject Name: MATHS-II Subject Code: 23000010 Course Outcomes (COs):

CO1	Understand vectors in RnRn and operations involving linear combinations.
CO2	Identify subspaces and determine basis and dimension and Perform coordinate
CO2	transformations and understand the change of basis.
CO3	Understand linear transformations and their properties and Represent linear
	transformations with matrices and explore the concept of similarity.
CO4	Apply inner product spaces to least squares approximation and diagonalization of
	symmetric matrices and Explore applications of quadratic forms and optimization.
CO5	Apply double and triple integrals over different regions and Utilize Fubini's theorem and
	change of variables in multiple integrals.
CO6	Apply integration techniques to calculate volumes of various solids.

Subject Name: ENGINEEERING GRAPHICS

Subject Code: 23000011 Course Outcomes (COs):

CO1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO2	Understanding the object through orthographic projections.
CO3	Construct basic and intermediate geometry and application of engineering curves.
CO4	Enhance visualization skills for developing new products.
CO5	Develop new products through technical communication skill in the form of communicative drawings.
CO6	Develop the theory of orthographic projection and views.

Subject Name: ELEMENTS OF CIVIL ENGINEERING

Subject Code: 23000015 Course Outcomes (COs):

CO1	Carry out simple land survey to prepare maps with existing details.
CO2	Find out area of irregular shaped plane figures.
CO3	Understand building plan elevation and section.
CO4	Get acquainted with construction materials.
CO5	Get acquainted with hydrological cycle and hydraulic structures.
CO6	Get acquainted with mass transportation systems.

Subject Name: BASIC PROGRAM IN ENTREPRENURESHIP

Subject Code: 12300002 Course Outcomes (COs):

CO1	Develop an understanding of best techniques for idea generation, opportunities
	exploration, and market research.
CO2	Check technical, market, financial and other types of Feasibility of their business idea
CO3	Develop business model to describe the rationale of how an organization creates, delivers,
	and captures value
CO4	Conduct the customer's survey to know the need of their business idea.

Semester-III

Subject Name: Maths-3 Subject Code: 23000015 Course Outcomes (COs):

CO1	To have a rigorous understanding of the concept of limit of a function.
CO2	The geometrical properties of continuous functions on closed and bounded intervals.
CO3	Extensively about the concept of differentiability using limits, leading to a better understanding for applications.
CO4	The applications of mean value theorems and Taylor's theorem.
CO5	Employ De Moivre's theorem in a number of applications to solve numerical problems

Subject Name: Mechanics of Solids

Subject Code: 23080301 Course Outcomes (COs):

CO1	Explain the basic concepts of Engineering Mechanics,
CO2	to evaluate the variations of shear force and bending moment in different kinds of beams
CO3	Evaluate the shear stress and angle of deflection in a shaft subjected to torque.
CO4	Evaluate Bending and shear stresses in different shaped channels.
CO5	Determine the buckling in the columns using different theories

Subject Name: Material Science and Metallurgy

Subject Code: 23080302 Course Outcomes (COs):

CO1	Application of knowledge relating the composition, structure and processing of materials
	to their uses.
CO2	The Study materials that covers metals, ceramics, polymers, and combinations of
CO2	materials or composites
CO3	Able to investigate the relationship between structure of materials and their properties.
CO4	Able to understand the new developments such as nano-science and nanotechnology e
	forefront of the studies
CO5	continue to propel materials science and engineering to the forefront of the studies

Subject Name: Manufacturing Process I

Subject Code: 23080303 Course Outcomes (COs):

CO1	Understand classification, scope and applications of manufacturing methods used in
	industries.
000	Explain the different casting methods with their process details, applications and
CO2	limitations.
CO3	Understand process details of rolling, forging, extrusion and drawing operations.
CO4	Classify and explain in detail different welding methods with brief introduction to brazing
	and soldering.
CO5	Understand powder metallurgy process with advantages, limitations and industrial
	applications.

Subject Name: Kinematics of Machines

Subject Code: 23080304 Course Outcomes (COs):

CO1	Classify and solve for mobility of planar mechanisms
CO2	Perform kinematic synthesis and analysis of planar mechanisms
CO3	Construct and analyze cam profiles for a specified motion of the follower
CO4	Analyze different types of gear trains
CO5	Model and analyze planar mechanisms using software package

Subject Name: Electriacal Technology

Subject Code: 23080305 Course Outcomes (COs):

CO1	Understand the basic concepts of DC circuits and Magnetic circuits and also able to solve
	Understand the basic concepts of DC circuits and Magnetic circuits and also able to solve problems related to DC and magnetic circuits.
CO2	Analysis of Single Phase and three phase AC Circuits and the representation of alternating quantities and also determining the power and other parameters in these circuits
CO3	Explain the construction, basic principle of operation, applications and also determine performance parameters of electrical Machines.
	performance parameters of electrical Machines.
CO4	Practice Electrical Safety Rules & standards and types of electrical wiring and domestic
	earthing.

Subject Name: Foundation Program in Entrepreneurship

Subject Code: 12300003 Course Outcomes (COs):

CO1	Demonstrate different Python data types and their structures
CO2	CInterpretation of the role of python in steps involved in data science
CO3	Illustrate the use of various operations for data cleansing and transformation
CO4	Analyze data visualization tools for data interpretation and insights of data
CO5	Perform data Wrangling with Scikit-learn applying exploratory data analysis

Semester-IV

Subject Name: Maths-4 Subject Code: 23000018 Course Outcomes (COs):

CO1	Extract the solution of differential equations of the first order and of the first degree
	byvariables separable, Homogeneous and NonHomogeneous methods
CO2	Find a solution of differential equations of the first order and of a degree higher than the
CO2	firstby using methods of solvable for p, x and y
CO3	Compute all the solutions of second and higher order linear differential equations
	withconstant coefficients, linear equations with variable
	coefficients.
CO4	Solve simultaneous linear equations with constant coefficients and Total Differential
CO4	equations
CO5	Form partial differential equations
CO6	Find the solution of First order partial differential equations for some standard types.

Subject Name: Automobile MEASUREMENT & METROLOGY

Subject Code: 23010401 Course Outcomes (COs):

CO1	Create holistic value based education for the students
CO2	Understand the different tools for student's overall development
CO3	Apply critical thinking
CO4	Analyze soft skills and hard skills
CO5	Understand the values of our country
CO6	Analyze the role models to learn from models who have a lived principle

Subject Name: AUTOMOBILE MANUFACTURING PROCESSES

Subject Code: 23010402 Course Outcomes (COs):

CO1	Understand basic concepts of Manufacturing processes.
CO2	To understand Metal casting process, patterns, defect and its applications.
CO3	To understand different types of welding process, soldering and brazing process.
CO4	To understand metal shaping and forming process.
CO5	Understanding of Plastic, Ceramic and Glass processing techniques.

Subject Name: ENGINEERING THERMODYNAMICS

Subject Code: 23090401 Course Outcomes (COs):

CO1	Understand the design thinking process
CO2	Design a solution to an engineering problem
CO3	Identify needs and constraints of product development system
CO4	Create a prototype model
CO5	Evaluate the designed solution
CO6	Make economic decision for solution.

Subject Name: MACHINE DESIGN & INDUSTRIAL DRAFTING

Subject Code: 23090403 Course Outcomes (COs):

CO1	Apply the techniques of discrete mathematics for theoretical computer science.
CO2	Design different formal languages and their relationship.
CO3	Classify grammars for different languages .
CO4	Build finite automata, push down automata and turing machine.
CO5	Analyze various concepts of undecidability and Computable Function for problem-solving situation.

Subject Name: INTERMEDIATE PROGRAM IN ENTREPRENEURSHIP

Subject Code: 1230004 Course Outcomes (COs):

CO1	Demonstrate the various features of microprocessor, memory and I/O devices
CO2	Identify the hardware elements of 8085 microprocessor.
CO3	Select appropriate 8085 instructions based on size and functions to write an assembly language program
CO4	Design different interfacing system using concepts of memory and I/O interfacing.
CO5	CO5 :Demonstrate the features of advance microprocessors.

Semester-V

Subject Name: Fluid Mechanics

Subject Code: 23090501 Course Outcomes (COs):

CO1	To understand fluids and its properties.
CO2	Understand laminar and turbulent flow through pipes and parallel plates.
CO3	Understand various types of flow, Mass Momentum and energy conservation and related equations.
CO4	Explain various applications of Bernoulli's Equation, Notches and Weirs, Orifices and Mouthpieces
CO5	Understand different types of flow through pipes, Viscous and turbulent flow.

Subject Name: Heat Transfer Subject Code: 23090503 Course Outcomes (COs):

CO1	Explain the governing laws and modes of heat transfer
CO2	Compute temperature distribution and heat transfer rate in steady and unsteady state heat conduction
CO3	Interpret and analyse natural and forced convective heat transfer with dimensional analysis
CO4	Analyse the performance of heat exchangers under different flow conditions using LMTD and NTU method.
CO5	Analyse radiative heat transfer between two or more black/gray bodies

Subject Name: Automobile Systems

Subject Code: 23010503 Course Outcomes (COs):

CO1	Understand the various vehicle classification and its layouts.
CO2	Understand the different types of systems.of clutches and brakes
CO3	Understand the different types of systems.of clutches and brakes
CO4	Understand the transmission systems.
CO5	Understand the steering requirements and types of front axle.

Subject Name: Automobile Engines

Subject Code: 23010504 Course Outcomes (COs):

CO1	Understand various components of the engine and its functions
CO2	Gain knowledge on combustion in CI Engine
CO3	Understand the lubrication and cooling system in IC Engines
CO4	Understand the turbo, supercharging and scavenging system in IC Engines
CO5	Understand the combustion in SI Engine

Subject Name: Automotive Electrical Systems

Subject Code: 23010505 Course Outcomes (COs):

CO1	Understand the basic auto electrical systems.
CO2	Understand the layout of wiring and connections of electrical systems in automobiles.
CO3	Understand the working of different electrical components and latest technology used in
	automobiles.

Subject Name: Automobile Chassis & Body Engineering

Subject Code: 23010506 Course Outcomes (COs):

CO1	Understand and have knowledge about different aspects related to body and chassis
CO2	Understand various safety provisions.
CO3	Design the chassis and able to select the section of same.
CO4	Design the cabin and frame component to transfer the force.
CO5	Optimization from safety and cost point of view.

Subject Name: Intellectual Property Rights

Subject Code: 12300005 Course Outcomes (COs):

CO1	Evaluate strength and limitation of cloud computing
CO ₂	Analyze different cloud depoly and services architecture model
CO ₃	Understand various enterprise application in cloud computing
CO4	Apply the virtualization concepts
CO5	Analyze data security mechanism and SLA management in cloud

Semester-VI

Subject Name: MODERN QUALITY TECHNIQUES

Subject Code: 23010601 Course Outcomes (COs):

	204284 2440011148 (208)	
CO1	Engineering Knowledge: Acquisition of Engineering knowledge on quality systems is essential to accomplish solutions to complex engineering problems in quality management	
	and system	
	Engineering Knowledge: Acquisition of Engineering knowledge on fundamentals of	
CO2	leadership is essential to accomplish solutions to complex engineering problems in	
	fundamentals of process planning and management of quality leadership	
CO3	Ethics: Apply business ethical principles and ethics management system	
004	individual and Teamwork: Function effectively as an individual and as a member or	
CO4	leader in teams, and in multidisciplinary settings.	
	Engineering Knowledge: Acquisition of Engineering knowledge on fundamentals of	
CO5	management systems is essential to accomplish solutions to engineering problems in	
	QMS	

Subject Name: DYNAMICS OF MACHINERY

Subject Code: 23090601 Course Outcomes (COs):

CO1	Introduction to design, material and its properties.
CO2	To design against fluctuating loads, S-N diagram, Soderberg and Gerber criteria.
CO3	To design thin and spherical vessels.
CO4	To understand design procedure of belt and chain drives.
CO5	To understand different types of springs, stresses and different loading condition of spring.

Subject Name: ALTERNATIVE FUEL AND POWER SYSTEMS

Subject Code: 23010603 Course Outcomes (COs):

CO1	To study different type of bio fuels and bio diesel
CO2	To understand the different type of bio gas and CNG Metering System
CO3	Describe layout of Electric system and Hybrid vehicle
CO4	Design the solar powered vehicle and fuel cell

Subject Name: HYBRID VEHICLE TECHNOLOGY

Subject Code: 23010604 Course Outcomes (COs):

CO1	Described the layout of Hybrid vehicle system and Convernational Vehicle
CO2	To understand the Hybrid electric system and electric Propulsion unit
CO3	To study about the energy storage and super capacitor of electric system
CO4	To Study about the Internal combustion engine

Subject Name: VEHICLE MAINTENANCE & GARAGE PRACTICE

Subject Code: 23010606 Course Outcomes (COs):

CO1	Preventive and maintenance of the vehicle
CO2	Study about the Tools and Instrunment of the garage
CO3	Function the service station and Engine maintenance
CO4	Repair and over hauling of the Cylinder block and cylinder head of the garage
CO5	Maintenance of Fuel Systems and Cooling Systems & Lubrication System Petrol
	Engine

Subject Name: SPECIAL PURPOSE VEHICLES

Subject Code: 23010605 Course Outcomes (COs):

CO1	Introduction of the SPV
CO2	To study about the earht moving equipment and road making equipment
CO3	Described the Lifitng and machinery and Pto shaft and auxiliary system
CO4	Design the farm equipment and oil tanker and other quipment used in SPV

Semester-VII

Subject Name: Vehicle Testing & Homologation

Subject Code: 23010701 Course Outcomes (COs):

CO1	Need of vehicle testing and homologation
CO2	To describe the noise and Vibration Harshness Testing
CO3	To Study about the vehicle performance and Energy consuption of the vehicle
CO4	Testing the Road and track and PDI of the engine and Inspetion
CO5	Understanding of some AIS Standards:
CO6	Testing the active and passive safety of the vehicle

Subject Name: Vehicle Dynamics

Subject Code: 23010708 Course Outcomes (COs):

CO1	To study about the Performance Characteristics of Vehicle
CO2	Design the aerodynamics air and air distribution of the vehicle
CO3	Terminology and Axis System of the vehicle
CO4	Calculation of effective spring rate of the supesion system
CO5	Resistance forces acting on motorcycle

Subject Name: Automobile Component Design

Subject Code: 23010703 Course Outcomes (COs):

CO1	Design of standardization in automobile system
CO2	Consideration of the Welding and Casting of the metal
CO3	Selection of bearings from manufacturers catalogue.
CO4	Details Bearing types and their constructional details
CO5	Design of I.C. Engine Components

Subject Name: Two and Three Wheelers

Subject Code: 23010704 Course Outcomes (COs):

CO1	Vehicle body classification and specification
CO2	Analysis Static load, Load due to Acceleration and Braking, Moments and Torque due to
CO2	driving conditions
CO3	Introduction to electric vehicles & hybrid vehicles.
CO4	Fundamentals of engine electricals, Lighting and Indicators
CO5	To study about the steering system and suspension system and braking system

Subject Name: Noise Vibration Harshness and Safety

Subject Code: 23010707 Course Outcomes (COs):

CO1	The basic terminologies of Noise, Vibration & Harshness – NVH, which is a major focus
	for high end luxury vehicles manufacturers, in the current times
CO2	basic terminologies of Noise, Vibration & Harshness – NVH, which is a major focus for
COZ	high end luxury vehicles manufacturers, in the current times
CO3	Understand Application of engineering techniques, tools, for measurement methods in
	order to learn to control and solve complex Vehicle vibrations behavior /as well as
	performance problems.
CO4	Application of systematic engineering synthesis and design processes for eliminating or
	reducing the Vibration, Noise to reduce irritation to occupants and achieve improvement
	in perception of ride comfort

Subject Name: Project-1 Subject Code: 23000023 Course Outcomes (COs):

Course Outcomes (Cos).	
CO1	Define a problem and review literature to identify the gaps, objectives & scope of the work.
CO2	Analyze the problems of mechanical engineering to formulate objectives of project.
CO3	Design a system, component, or process to meet the desired needs of social and sustainability.
CO4	Demonstrate the techniques, skills, and modern engineering tools necessary for engineering practice.
CO5	Prepare a professional report as per recommended format and defend the work.

Semester-VIII

Subject Name: PROJECT 2 Subject Code: 23000025 Course Outcomes (COs):

CO1	Define a problem and review literature to identify the gaps, objectives & scope of the work.
CO2	Analyze the problems of mechanical engineering to formulate objectives of project.
CO3	Design a system, component, or process to meet the desired needs of social and sustainability.
CO4	Demonstrate the techniques, skills, and modern engineering tools necessary for engineering practice.
CO5	Prepare a professional report as per recommended format and defend the work.

Subject Name: AUTOMOBILE SYSTEM DESIGN

Subject Code: 23010801 Course Outcomes (COs):

CO1	Design of various clutch system components of the master cylinder
CO2	Design the propeller shaft and universal joint, slip joint
CO3	To study about the Axle of the steering system and Turing radius
CO4	Design the Braking system and Disc brake of the vehicle
CO5	Describe the fully floating and Half floating of the vehicle

Subject Name: VEHICLE BODY ENGINEERING

Subject Code: 23010802 Course Outcomes (COs):

CO1	Design of the car body and constrution of the car
CO2	Objective the vehicle aerodynamics
CO3	Construction of the mini bus and articulated layout
CO4	Method of the body trim and mechanicsm

Semester: 1

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Maths-I	Course code	23000001
Course type:	Engineering Science	Course credit:	5

CO 1	Analyze and manipulate infinite sequences and series.
CO 2	Evaluate limits involving indeterminate forms.
CO 3	Understand and apply techniques for improper integrals.
CO 4	Analyze functions of several variables and solve optimization problems.
CO 5	Solve systems of linear equations using matrices and determinants.
CO 6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.

NIDA'S FIBST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Fundamentals of Computer	Course code	23000004
	Programming		
Course type:	Engineering Science	Course credit:	4

CO 1	Apply fundamental principles of problem solving in software engineering.
CO 2	Apply basic programming principles using C language.
CO 3	Apply basic C program structure in software development
CO 4	Prepare graduates for professional careers in roles including, but not limited to, the following: computer programmer, software engineer, software systems designer, software applications developer, technical software project lead, computer systems analyst, computer systems programmer, software applications tester and maintainer.
CO 5	To prepare graduates with the knowledge and skills to do advanced studies and research in computer science and related engineering and scientific disciplines
CO 6	To equip graduates with the communication skills, both oral and written, to become an effective team-oriented problem solver as well as an effective communicator with nontechnical stakeholders in computer and software systems development, maintenance and administration.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Elements of Electrical Engineering	Course code	23000012
Course type:	Engineering Science	Course credit:	5

CO 1	Define electrical current, potential difference, power and
	energy, sources of electrical energy, resistance and its
	behavior with temperature.
CO 2	Understand the different types of wires, cables, connectors & amp;
	switches used for wiring Different types of domestic and
	industrial wiring.
CO 3	Apply the concepts of KVL/KCL and network theorems in solving
	DC circuits.
CO 4	Analyze the steady state behavior of single phase and three phase
	AC electrical circuits.
CO 5	Compare various protective devices of working principle,
	usage and construction such as fuse, MCB, ELCB & Samp; Relays.
CO 6	Design and development of varies Electrical Wiring and
	electronics miniproctes.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Elements of Mechanical Engineering	Course code	23000003
Course type:	Engineering Science	Course credit:	6

CO 1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO 2	Make calculations for commonly used working fluids i.e. ideal gases and steam.
CO 3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO 4	Discuss working and applications of steam boilers and various energy conversion systems.
CO 5	Discuss various power transmission elements and properties of various engineering materials with their applications.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Environmental Studies	Course code	2300006
Course type:	Engineering Science	Course credit:	2

CO 1	Describe natural resources, importance of ecosystem and conservation of biodiversity with respect to multiple disciplines.
CO 2	Explain causes, effects, solutions for various pollution problems and its minimization strategies.
CO 3	Differentiate between requirements of laws and regulations for environmental conservation and applicability of legislations in society and industries.
CO 4	Discuss environmental ethics and their implementation for betterment of environment and human life.

INDUSES PERSONNERS PLYBOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Orientation Program in Startup and Entrepreneurship	Course code	12300001
Course type:	Engineering Science	Course credit:	3

CO 1	Apply the basic principles of entrepreneurship
CO 2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and various entrepreneurial opportunities.
CO 3	Understanding various individual attributes of entrepreneurial personality traits, entrepreneurial characteristics, behavioural attributes and importance of creativity and innovation.
CO 4	Develop an understanding of best techniques for idea generation and opportunities exploration.

INDUSTRIBUTE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Workshop	Course code	23000029
Course type:	Engineering Science	Course credit:	4

CO 1	Understand applications of hand tools and power tools and operations of machine
	tools.
CO 2	Understand the operations of machine tools.
CO 3	Select the appropriate tools required for specific operation.
CO 4	Comprehend the safety measures required to be taken while using the tools.
CO 5	Prepare Fitting, Carpentry, Plumbing, Welding, and Tin-smithy Jobs.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	1
Course title:	Electronics Workshop	Course code	23000002
Course type:	Engineering Science	Course credit:	4

CO 1	Measure different electrical quantities.
CO 2	Understand the requirements and operation of safety devices
CO 3	Select the appropriate tools and components required for the specific operation
CO 4	Wire and trouble shoot of household appliances.

INDIA'S FIRST UNIVERSITY FOR STARTUP

SEMESTER:-2

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Maths-II	Course code	23000010
Course type:	Engineering Science	Course credit:	5

CO 1	Understand vectors in $\mathbb{R}^n \times \mathbb{R}^n$ and operations involving linear combinations.
CO 2	Identify subspaces and determine basis and dimension and Perform coordinate transformations and understand the change of basis.
CO 3	Understand linear transformations and their properties and Represent linear transformations with matrices and explore the concept of similarity.
CO 4	Apply inner product spaces to least squares approximation and diagonalization of symmetric matrices and Explore applications of quadratic forms and optimization.
CO 5	Apply double and triple integrals over different regions and Utilize Fubini's theorem and change of variables in multiple integrals.
CO 6	Apply integration techniques to calculate volumes of various solids.

INDUSTRIBUTE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Engineering Physics	Course code	2300005
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic concepts and classification of sound.
CO 2	Analyze applications of superconductors.
CO 3	Understand the fundamentals of laser radiation.
CO 4	Evaluate the applications of optical fibers.
CO 5	Apply dielectric materials in capacitors and transformers.
CO 6	Explore applications of magnetic materials.
CO 7	Explain the synthesis and applications of nonmaterial's.

INDUSTRIBUTE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Communication Skills	Course code	23000008
Course type:	Engineering Science	Course credit:	3

CO 1	To improve students' communicative and linguistic approach in English.
CO 2	To provide an ice-breaking technique using LSRW skills and soft skills
CO 3	To learn techniques to improve overall communication abilities and effective use of writing in the field of advertising and public relations.
CO 4	Improve communication skills through practicing debate, discussion and appearing in interview.
CO 5	Use of ethical consideration in order to develop good etiquettes both in online and offline communication.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Basic Electronics	Course code	23000009
Course type:	Engineering Science	Course credit:	5

CO 1	To study basics of semiconductor & amp; devices and their applications in different
	areas.
CO 2	Demonstrate the operating principle and output characteristics of pn junction diodes,
	zener diode, Varactor diode, BJT, rectifiers and different diode circuits
CO 3	Compute and characterization of different biasing techniques to operate transistor
	FET, MOSFET and operational amplifier in different modes
CO 4	To implementation of basic digital gates using diode and basic family of logic
	Families

INDUCT FIRST UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics	Course code	23000011
Course type:	Engineering Science	Course credit:	6

CO 1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO 2	Understanding the object through orthographic projections.
CO 3	Construct basic and intermediate geometry and application of engineering curves.
CO 4	Enhance visualization skills for developing new products.
CO 5	Develop new products through technical communication skill in the form of communicative drawings.
CO 6	Develop the theory of orthographic projection and views.

SIDE STREET DESIGNATION STARTER

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Elements of Civil Engineering	Course code	23000015
Course type:	Engineering Science	Course credit:	6

CO 1	Carry out simple land survey to prepare maps with existing details.
CO 2	Find out area of irregular shaped plane figures.
CO 3	Understand building plan elevation and section.
CO 4	Get acquainted with construction materials.
CO 5	Get acquainted with hydrological cycle and hydraulic structures.
CO 6	Get acquainted with mass transportation systems.

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	BASIC PROGRAM IN	Course code	12300002
	ENTREPRENURESHIP		
Course type:	Engineering Science	Course credit:	3

CO 1	Develop an understanding of best techniques for idea generation, opportunities exploration, and market research.
CO 2	Check technical, market, financial and other types of Feasibility of their business idea
CO 3	Develop business model to describe the rationale of how an organization creates, delivers, and captures value
CO 4	Conduct the customer's survey to know the need of their business idea.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Chemistry	Course code	23020216
Course type:	Engineering Science	Course credit:	4

CO 1	To relate periodic properties such as ionization potential, oxidation states and electro negativity.
CO 2	To analyze microscopic chemistry in terms of atomic and molecular orbital's and inter molecular forces.
CO 3	To describe the importance and relevance of chemistry in our everyday life
CO 4	To select the appropriate chemical material and utilization of it.
CO 5	To interpret the methods of science as a logical means of problem solving.
CO 6	To distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.

INDUSES PERSONNERS PLYBOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Personality Development	Course code	24190203
Course type:	Engineering Science	Course credit:	3

CO 1	To provide an icebreaking technique using LSRW skills and soft skills
CO 2	To learn techniques to improve overall communication abilities and effective
	use of writing in the field of advertising and public relations.
CO 3	Improve communication skills through practicing debate, discussion and
	appearing in interview.
CO 4	Use of ethical consideration in order to develop good etiquettes both in online
	and offline communication.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Web Technology	Course code	24190204
Course type:	Engineering Science	Course credit:	4

CO 1	Write and debug JavaScript to enhance user interactivity and improve the user
	experience.
CO 2	Understand server-side programming concepts using languages such as Node.js,
	Python, or PHP.
CO 3	Create responsive and visually appealing web pages using HTML, CSS, and
	JavaScript.
CO 4	Explain the basic principles of how the web works, including HTTP, URLs, and
	web servers.
CO 5	Use Git for version control, including branching, merging, and collaboration
	workflows.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Introduction to Cloud	Course code	24190205
	Technology		
Course type:	Engineering Science	Course credit:	3

CO 1	Compare major cloud service providers (e.g., AWS, Azure, Google Cloud) and
	their offerings.
CO 2	Recognize key security principles and practices in cloud environments,
	including data protection, compliance, and identity management.
CO 3	Set up and manage basic cloud services, such as virtual machines, storage
	solutions, and databases.
CO 4	Use cloud management and monitoring tools to oversee cloud resources,
	optimize performance, and manage costs.
CO 5	Identify emerging trends in cloud technology, such as serverless computing,
	containerization, and edge computing.

INDUCTOR BERNELEN INTERSPEKTION STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics &	Course code	24190206
	Design		
Course type:	Engineering Science	Course credit:	4

CO 1	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.
CO 2	Apply geometric construction methods to create and analyze shapes, dimensions, and spatial relationships.
CO 3	Construct and visualize 3D models using CAD software, demonstrating an understanding of spatial relationships and design principles.
CO 4	Analyze and evaluate design concepts for functionality, manufacturability, and aesthetics, using appropriate tools and techniques.
CO 5	Work collaboratively in teams to develop a design project from concept through to presentation, demonstrating project management and teamwork skills.
CO 6	Explain the principles of engineering graphics, including the importance of technical drawing in engineering design and communication.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Mentoring and Counselling	Course code	24190207
Course type:	Engineering Science	Course credit:	

CO 1	Explain key theories and principles of mentoring and counseling, including
	various approaches and methodologies.
CO 2	Demonstrate active listening, empathy, and nonverbal communication
	techniques essential for building rapport with mentees or clients.
CO 3	Foster an inclusive and supportive environment that encourages open
	communication and trust between the mentor/counselor and the mentee/client.
CO 4	Engage in self-reflection to assess personal strengths and areas for growth as a
_	mentor or counselor, fostering continuous professional development.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	1 st Year	Semester:	2
Course title:	Open Project / MOOC	Course code	24190208
Course type:	Engineering Science	Course credit:	1

CO 1	Identify and articulate the goals and objectives of their open project, ensuring
	alignment with personal or community needs.
CO 2	Utilize project management tools and techniques to organize, monitor, and
	evaluate project progress effectively.
CO 3	Identify, evaluate, and utilize open educational resources (OER) to enhance
	learning and project outcomes.
CO 4	Engage in self-reflection to assess personal growth, learning experiences, and
_	challenges faced during the project.

Semester: 3

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2 nd Year	Semester:	3
Course title:	Maths - III	Course code	2300015
Course type:	Engineering Science	Course credit:	5

CO 1	Apply Fourier series to analyze and represent periodic functions.
CO 2	Apply Laplace transforms to solve differential equations and system problems.
CO 3	Apply methods such as integrating factor, Bernoulli equations, and linear differential equations.
CO 4	Apply series solutions to solve differential equations and analyze the convergence and divergence of series solutions.
CO 5	Apply the method of separation of variables to solve PDEs to analyze solutions in cylindrical and spherical polar coordinates.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
			1 120
Year:	2 nd Year	Semester:	3
Course title:	Digital Electronics	Course code	23070301
Course type:	Engineering Science	Course credit:	5

CO 1	Have a thorough understanding of the fundamental concepts and techniques used in
CO 2	Apply on Gate of digital electronics.
CO 3	To understand and examine the structure of various number systems and its
CO 4	Application in digital design.
CO 5	The ability to understand, analyze and design various combinational and sequential

INDUCES PERSON LENGTHERS FLY ROR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2 nd Year	Semester:	3
Course title:	Data Structure And Algorithm	Course code	23040302
Course type:	Engineering Science	Course credit:	5

CO 1	Learn the basic types for data structure, implementation and application.
CO 2	Know the strength and weakness of different data structures.
CO 3	Use the appropriate data structure in context of solution of given problem
CO 4	Develop programming skills which require solving given problem.
CO 5	Learn the data structure, implementation and application.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2 nd Year	Semester:	3
Course title:	Database Management System	Course code	23040301
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic concepts of database management systems (L2)
CO 2	Apply SQL to find solutions to a broad range of queries (L3).
CO 3	Apply normalization techniques to improve database design (L3)
CO 4	Analyze a given database application scenario to use ER model
CO 5	Conceptual design of the database

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2 nd Year	Semester:	3
Course title:	Computer Network	Course code	23040303
Course type:	Engineering Science	Course credit:	4

CO 1	Understand Basics of Computer Networks and different
CO 2	Transmission Media.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Computer network internet effectively.
CO 5	Understand various protocol layers and inner operations.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2 Year	Semester:	4
Course title:	Operating System	Course code	23040401
Course type:	Engineering Science	Course Credit	4

CO 1	Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and their communication.
CO 2	Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and their communication.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Discuss the storage management policies with respect to different storage management technologies
CO 5	Analyze the memory management and its allocation policies

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2Year	Semester:	4
Course title:	Object Oriented Programming with C++	Course code	23040402
Course type:	Engineering Science	Course Credit	5

CO 1	Codes basic programs in Java programming language.
CO 2	Prints to the screen in Java language.
CO 3	Makes relational operations in Java.
CO 4	Constructs loops in Java.
CO 5	Defines arrays in Java and uses them.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2Year	Semester:	4
Course title:	System Software	Course code	23040403
Course type:	Engineering Scie <mark>nce</mark>	Course Credit	4

CO 1	To understand the relationship between system software and machine
CO 2	To understand architecture.
CO 3	To understand the processing of an HLL program for execution on a computer.
CO 4	To understand the process of scanning and parsing.
CO 5	To know the design and implementation of assemblers, macro processor, linker

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	2 Year	Semester:	4
Course title:	Computer Organization and MicroProcessor	Course code	23070401
Course type:	Engineering Science	Course Credit	4

CO 1	To know the background of internal communication of computer
CO 2	To have better idea on how to write assemble language programs
CO 3	To be clear with memory management techniques
CO 4	To better with IO devices communication with processor
CO 5	To notice how to perform computer arithmetic operations

Semester: 5

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	5
Course title:	Object Oriented Programming with JAVA	Course code	23040501
Course type:	Engineering Science	Course Credit	6

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	5
Course title:	Theory of Computation	Course code	23040502
Course type:	Engineering Science	Course Credit	6

CO 1	To give an overview of the theoretical foundations of computer science from
CO 2	the perspective of formal languages
CO 3	To illustrate finite state machines to solve problems in computing
CO 4	To explain the hierarchy of problems arising in the computer sciences.
CO 5	To familiarize Regular grammars, context frees grammar

Program:	Bachelor of Engineering Branch:		CE AI
Year:	3 Year	Semester:	5
Course title:	Information Network & Cyber Security	Course code	23040503
Course type:	Engineering Science	Course Credit	4

CO 1	Identify some of the factors driving the need for network security.
CO 2	Identify and classify particular examples of attacks.
CO 3	Define the terms vulnerability, threat and attack.
CO 4	Identify physical points of vulnerability in simple networks.
CO 5	Identify the need for network security.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	5
Course title:	Web Technology	Course code	23040504
Course type:	Engineering Science	Course Credit	4

CO 1	Students are able to develop a dynamic webpage by the use of java script and
CO 2	DHTML.
CO 3	Students will be able to write a well formed / valid XML document.
CO 4	Students will be able to connect a java program to a DBMS and perform insert,
CO 5	DHTML update and delete operations on DBMS table.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	5
Course title:	Computer Graphics and Visulization	Course code	23040506
Course type:	Engineering Science	Course Credit	4

CO 1	Understand the basics of computer graphics, different
CO 2	Graphics systems and applications of computer graphics.
CO 3	Discuss various algorithms for scan conversion and
CO 4	Filling of basic objects and their comparative analysis.
CO 5	Use of geometric transformations on graphics objects

Semester 6

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	6
Course title:	Wireless Network	Course code	23040601
Course type:	Engineering Science	Course Credit	4

CO 1	Conversant with the latest 3G/4G and Wi-MAX networks and its architecture.
CO 2	Design and implement wireless network environment for any application using latest
CO 3	Wireless protocols and standards.
CO 4	Implement different type of applications for smart phones and mobile devices with
CO 5	latest network strategies

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	6
Course title:	Compiler Design	Course code	23040602
Course type:	Engineering Science	Course Credit	4

CO 1	Realize basics of compile <mark>r design and apply for real time applications.</mark>
CO 2	To introduce different translation languages
CO 3	To understand the importance of code optimization
CO 4	To know about compiler generation tools and techniques
CO 5	To learn working of compiler and non compiler applications

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	6
Course title:	Cloud Computing	Course code	23040603
Course type:	Engineering Science	Course Credit	4

CO 1	Explain the core concep <mark>ts of the cloud computing paradigm: how and why</mark> this paradigm shift came		
	about, the characteristics, advantages and challenges brought about by the various models and		
	services in cloud computing.		
CO 2	Apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and		
	cost.		
CO 3	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and		
	outline their role in managing infrastructure in cloud computing.		
CO 4	Analyze various cloud programming models and apply them to solve problems on the cloud.		
CO 5	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came		
	about, the characteristics, advantages and challenges brought about by the various models and		
	services in cloud computing.		

NUMBER OF STARTUP

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	6
Course title:	Data Mining and Warehousing	Course code	23040604
Course type:	Engineering Science	Course Credit	4

CO 1	Be familiar with mathematical foundations of data mining tools
CO 2	Understand and implement classical models and algorithms in data warehouses and
CO 3	data mining discovered by association rule
CO 4	Characterize the kinds of patterns that can be discovered by association rule
CO 5	data mining, classification and clustering.

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	3 Year	Semester:	6
Course title:	Advance JAVA	Course code	23040606
Course type:	Engineering Science	Course Credit	5

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

Semester 7

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	4 Year	Semester:	7
Tear.	4 1601	Semester.	,
Course title:	Artificial Intelligence	Course code	23040701
Course type:	Engineering Science	Course Credit	5

CO 1	Develop mathematical thinking and problem solving skills associated with research and writing proofs.
CO 2	Get exposure to a wide variety of mathematical concepts used in computer science discipline like probability.
CO 3	Use Graph Theory for solving problems.
CO 4	Acquire basic knowledge of sampling and estimation.
CO 5	Understand basic concepts of hypothesis

INDUSES PERSONNERS PLYBOR STARTUP

Program	Bachelor of Engineering	Branch:	CE AI
Year:	4 Year	Semester:	7
Course title:	Python Programming	Course code	23040702
Course type:	Engin <mark>eering Science</mark>	Course Credit	5

CO 1	Create your first program in Python IDLE
CO 2	Implement OOPs concepts in your programming
CO 3	Use Arrays, and Data structures
CO 4	Create an application with the support of graphics in Python
CO 5	Implement error handling

Semester: 8

Program:	Bachelor of Engineering	Branch:	CE AI
Year:	4 Year	Semester:	8
Course title:	Programming with XML & JSON	Course code	23040802
Course type:	Engineer <mark>ing Science</mark>	Course Credit	6

CO 1	Students are able to develop a dynamic webpage by the use of java script and DHTML.
CO 2	Students will be able to write a well formed / valid XML document.
CO 3	Students will be able to connect a java program to a DBMS and perform insert, update.
CO 4	Delete operations on DBMS table.
CO 5	Students will be able to write a server side java application called Servlet to catch form data

INDUSES PERSONNERS PLYBOR STARTUP

Semester: 1

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	1
Course title:	Maths-I	Course code	23000001
Course type:	Engineering Science	Course credit:	5

CO 1	Analyze and manipulate infinite sequences and series.
CO 2	Evaluate limits involving indeterminate forms.
CO 3	Understand and apply techniques for improper integrals.
CO 4	Analyze functions of several variables and solve optimization problems.
CO 5	Solve systems of linear equations using matrices and determinants.
CO 6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.

INDUCES PERSON LENGTHERS FLY ROR STARTUP

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	1
Course title:	Fundamentals of Computer	Course code	23000004
	Programming		
Course type:	Engineering Science	Course credit:	4

CO 1	Apply fundamental principles of problem solving in software engineering.
CO 2	Apply basic programming principles using C language.
CO 3	Apply basic C program structure in software development
CO 4	Prepare graduates for professional careers in roles including, but not limited to, the following: computer programmer, software engineer, software systems designer, software applications developer, technical software project lead, computer systems analyst, computer systems programmer, software applications tester and maintainer.
CO 5	To prepare graduates with the knowledge and skills to do advanced studies and research in computer science and related engineering and scientific disciplines
CO 6	To equip graduates with the communication skills, both oral and written, to become an effective team-oriented problem solver as well as an effective communicator with nontechnical stakeholders in computer and software systems development, maintenance and administration.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	1
Course title:	Elements of Electrical Engineering	Course code	23000012
Course type:	Engineering Science	Course credit:	5

CO 1	Define electrical current, potential difference, power and
	energy, sources of electrical energy, resistance and its
	behavior with temperature.
CO 2	Understand the different types of wires, cables, connectors & Damp;
	switches used for wiring Different types of domestic and
	industrial wiring.
CO 3	Apply the concepts of KVL/KCL and network theorems in solving
	DC circuits.
CO 4	Analyze the steady state behavior of single phase and three phase
	AC electrical circuits.
CO 5	Compare various protective devices of working principle,
	usage and construction such as fuse, MCB, ELCB & Camp; Relays.
CO 6	Design and development of varies Electrical Wiring and
	electronics miniproctes.
	TABLUE OF INDUVALION

	Bachelor of Engineering	Branch:	CE CTIS
Program:			
Year:	1 st Year	Semester:	1
Course title:	Elements of Mechanical Engineering	Course code	23000003
Course type:	Engineering Science	Course credit:	6

CO 1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO 2	Make calculations for commonly used working fluids i.e. ideal gases and steam.
CO 3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO 4	Discuss working and applications of steam boilers and various energy conversion systems.
CO 5	Discuss various power transmission elements and properties of various engineering materials with their applications.

INDUSTRIBLE UNIVERSITY FOR STARTUP

	Bachelor of Engineering	Branch:	CE CTIS
Program:			
Year:	1 st Year	Semester:	1
Course title:	Environmental Studies	Course code	23000006
Course type:	Engineering Science	Course credit:	2

CO 1	Describe natural resources, importance of ecosystem and conservation of biodiversity with respect to multiple disciplines.
CO 2	Explain causes, effects, solutions for various pollution problems and its minimization strategies.
CO 3	Differentiate between requirements of laws and regulations for environmental conservation and applicability of legislations in society and industries.
CO 4	Discuss environmental ethics and their implementation for betterment of environment and human life.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	1
Course title:	Orientation Program in Startup and Entrepreneurship	Course code	12300001
Course type:	Engineering Science	Course credit:	3

CO 1	Apply the basic principles of entrepreneurship
CO 2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and various entrepreneurial opportunities.
CO 3	Understanding various individual attributes of entrepreneurial personality traits, entrepreneurial characteristics, behavioural attributes and importance of creativity and innovation.
CO 4	Develop an understanding of best techniques for idea generation and opportunities exploration.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	1
Course title:	Workshop	Course code	23000029
Course type:	Engineering Science	Course credit:	4

CO 1	Understand applications of hand tools and power tools and operations of machine
	tools.
CO 2	Understand the operations of machine tools.
CO 3	Select the appropriate tools required for specific operation.
CO 4	Comprehend the safety measures required to be taken while using the tools.
CO 5	Prepare Fitting, Carpentry, Plumbing, Welding, and Tin-smithy Jobs.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	1
Course title:	Electronics Workshop	Course code	23000002
Course type:	Engineering Science	Course credit:	4

CO 1	Measure different electrical quantities.
CO 2	Understand the requirements and operation of safety devices
CO 3	Select the appropriate tools and components required for the specific operation
CO 4	Wire and trouble shoot of household appliances.

SEMESTER:-2

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Maths-II	Course code	23000010
Course type:	Engineering Science	Course credit:	5

CO 1	Understand vectors in $\mathbb{R}^n \times \mathbb{R}^n$ and operations involving linear combinations.
CO 2	Identify subspaces and determine basis and dimension and Perform coordinate
	transformations and understand the change of basis.
CO 3	Understand linear transformations and their properties and Represent linear
	transformations with matrices and explore the concept of similarity.
CO 4	Apply inner product spaces to least squares approximation and diagonalization of
	symmetric matrices and Explore applications of quadratic forms and optimization.
CO 5	Apply double and triple integrals over different regions and Utilize Fubini's theorem
	and change of variables in multiple integrals.
CO 6	Apply integration techniques to calculate volumes of various solids.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Engineering Physics	Course code	23000005
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic concepts and classification of sound.
CO 2	Analyze applications of superconductors.
CO 3	Understand the fundamentals of laser radiation.
CO 4	Evaluate the applications of optical fibers.
CO 5	Apply dielectric materials in capacitors and transformers.
CO 6	Explore applications of magnetic materials.
CO 7	Explain the synthesis and applications of nonmaterial's.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Communication Skills	Course code	23000008
Course type:	Engineering Science	Course credit:	3

CO 1	To improve students' communicative and linguistic approach in English.
CO 2	To provide an ice-breaking technique using LSRW skills and soft skills
CO 3	To learn techniques to improve overall communication abilities and effective use of writing in the field of advertising and public relations.
CO 4	Improve communication skills through practicing debate, discussion and appearing in interview.
CO 5	Use of ethical consideration in order to develop good etiquettes both in online and offline communication.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Basic Electronics	Course code	23000009
Course type:	Engineering Science	Course credit:	5

GO 1	
CO 1	To study basics of semiconductor & amp; devices and their applications in different
	areas.
	dieds.
CO 2	Demonstrate the operating principle and output characteristics of pn junction diodes,
	zener diode, Varactor diode, BJT, rectifiers and different diode circuits
CO 3	Compute and characterization of different biasing techniques to operate transistor
	FET, MOSFET and operational amplifier in different modes
CO 4	To implementation of basic digital gates using diode and basic family of logic Families

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics	Course code	23000011
Course type:	Engineering Science	Course credit:	6

CO 1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO 2	Understanding the object through orthographic projections.
CO 3	Construct basic and intermediate geometry and application of engineering curves.
CO 4	Enhance visualization skills for developing new products.
CO 5	Develop new products through technical communication skill in the form of communicative drawings.
CO 6	Develop the theory of orthographic projection and views.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Elements of Civil Engineering	Course code	23000015
Course type:	Engineering Science	Course credit:	6

CO 1	Carry out simple land survey to prepare maps with existing details.
CO 2	Find out area of irregular shaped plane figures.
CO 3	Understand building plan elevation and section.
CO 4	Get acquainted with construction materials.
CO 5	Get acquainted with hydrological cycle and hydraulic structures.
CO 6	Get acquainted with mass transportation systems.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	BASIC PROGRAM IN	Course code	12300002
	ENTREPRENURESHIP		
Course type:	Engineering Science	Course credit:	3

CO 1	Develop an understanding of best techniques for idea generation, opportunities exploration, and market research.
CO 2	Check technical, market, financial and other types of Feasibility of their business idea
CO 3	Develop business model to describe the rationale of how an organization creates, delivers, and captures value
CO 4	Conduct the customer's survey to know the need of their business idea.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Chemistry	Course code	23020216
Course type:	Engineering Science	Course credit:	4

CO 1	To relate periodic properties such as ionization potential, oxidation states and electro negativity.
CO 2	To analyze microscopic chemistry in terms of atomic and molecular orbital's and inter molecular forces.
CO 3	To describe the importance and relevance of chemistry in our everyday life
CO 4	To select the appropriate chemical material and utilization of it.
CO 5	To interpret the methods of science as a logical means of problem solving.
CO 6	To distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Personality Development	Course code	24190203
Course type:	Engineering Science	Course credit:	3

CO 1	To provide an icebreaking technique using LSRW skills and soft skills
CO 2	To learn techniques to improve overall communication abilities and effective
	use of writing in the field of advertising and public relations.
CO 3	Improve communication skills through practicing debate, discussion and appearing in interview.
	appearing in interview.
CO 4	Use of ethical consideration in order to develop good etiquettes both in online
	and offline communication.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Web Technology	Course code	24190204
Course type:	Engineering Science	Course credit:	4

CO 1	Write and debug JavaScript to enhance user interactivity and improve the user
	experience.
CO 2	Understand server-side programming concepts using languages such as Node.js,
	Python, or PHP.
CO 3	Create responsive and visually appealing web pages using HTML, CSS, and JavaScript.
CO 4	Explain the basic principles of how the web works, including HTTP, URLs, and
	web servers.
CO 5	Use Git for version control, including branching, merging, and collaboration
	workflows.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Introduction to Cloud	Course code	24190205
	Technology		
Course type:	Engineering Science	Course credit:	3

CO 1	Compare major cloud service providers (e.g., AWS, Azure, Google Cloud) and
	their offerings.
CO 2	Recognize key security principles and practices in cloud environments,
	including data protection, compliance, and identity management.
CO 3	Set up and manage basic cloud services, such as virtual machines, storage
	solutions, and databases.
CO 4	Use cloud management and monitoring tools to oversee cloud resources,
	optimize performance, and manage costs.
CO 5	Identify emerging trends in cloud technology, such as serverless computing,
	containerization, and edge computing.

INDUSES PERSONNERS PLYBOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Engineering Graphics &	Course code	24190206
	Design		
Course type:	Engineering Science	Course credit:	4

CO 1	Explain the principles of engineering graphics, including the importance of
	technical drawing in engineering design and communication.
CO 2	Apply geometric construction methods to create and analyze shapes,
	dimensions, and spatial relationships.
CO 3	Construct and visualize 3D models using CAD software, demonstrating an
	understanding of spatial relationships and design principles.
	understanding of spatial relationships and design principles.
CO 4	Analyze and evaluate design concepts for functionality, manufacturability, and
	aesthetics, using appropriate tools and techniques.
	destrictes, using appropriate tools and techniques.
CO 5	Work collaboratively in teams to develop a design project from concept through
	to presentation, demonstrating project management and teamwork skills.
	to presentation, demonstrating project management and team work simils.
CO 6	Explain the principles of engineering graphics, including the importance of
	technical drawing in engineering design and communication.
	toominem are many an engineering deergn and communication.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Mentoring and Counselling	Course code	24190207
Course type:	Engineering Science	Course credit:	

CO 1	Explain key theories and principles of mentoring and counseling, including
	various approaches and methodologies.
CO 2	Demonstrate active listening, empathy, and nonverbal communication
	techniques essential for building rapport with mentees or clients.
CO 3	Foster an inclusive and supportive environment that encourages open
	communication and trust between the mentor/counselor and the mentee/client.
CO 4	Engage in self-reflection to assess personal strengths and areas for growth as a
	mentor or counselor, fostering continuous professional development.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	1 st Year	Semester:	2
Course title:	Open Project / MOOC	Course code	24190208
Course type:	Engineering Science	Course credit:	

CO 1	Identify and articulate the goals and objectives of their open project, ensuring alignment with personal or community needs.
CO 2	Utilize project management tools and techniques to organize, monitor, and evaluate project progress effectively.
CO 3	Identify, evaluate, and utilize open educational resources (OER) to enhance learning and project outcomes.
CO 4	Engage in self-reflection to assess personal growth, learning experiences, and challenges faced during the project.

Semester: 3

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	2 nd Year	Semester:	3
Course title:	Maths - III	Course code	2300015
Course type:	Engineering Science	Course credit:	5

CO 1	Apply Fourier series to analyze and represent periodic functions.
CO 2	Apply Laplace transforms to solve differential equations and system problems.
CO 3	Apply methods such as integrating factor, Bernoulli equations, and linear differential equations.
CO 4	Apply series solutions to solve differential equations and analyze the convergence and divergence of series solutions.
CO 5	Apply the method of separation of variables to solve PDEs to analyze solutions in cylindrical and spherical polar coordinates.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	2 nd Year	Semester:	3
Course title:	Digital Electronics	Course code	23070301
Course type:	Engineering Science	Course credit:	5

CO 1	Have a thorough understanding of the fundamental concepts and techniques used in
CO 2	Apply on Gate of digital electronics.
CO 3	To understand and examine the structure of various number systems and its
CO 4	Application in digital design.
CO 5	The ab <mark>ility to understand, analyze and design various combinational and sequential</mark>

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	2 nd Year	Semester:	3
Course title:	Data Structure And Algorithm	Course code	23040302
Course type:	Engineering Science	Course credit:	5

CO 1	Learn the basic types for data structure, implementation and application.
CO 2	Know the strength and weakness of different data structures.
CO 3	Use the appropriate data structure in context of solution of given problem
CO 4	Develop programming skills which require solving given problem.
CO 5	Learn the data structure, implementation and application.

	Bachelor of Engineering	Branch:	CE CTIS
Program:			
Year:	2 nd Year	Semester:	3
Course title:	Database Management System	Course code	23040301
Course type:	Engineering Science	Course credit:	5

CO 1	Understand the basic concepts of database management systems (L2)
CO 2	Apply SQL to find solutions to a broad range of queries (L3).
CO 3	Apply normalization techniques to improve database design (L3)
CO 4	Analyze a given database application scenario to use ER model
CO 5	Conceptual design of the database

INDUCTOR BERNELEN INTERSPEKTION STARTUP

	Bachelor of Engineering	Branch:	CE CTIS
Program:	25		
Year:	2 nd Year	Semester:	3
Course title:	Computer Network	Course code	23040303
Course type:	Engineering Science	Course credit:	4

CO 1	Understand Basics of Computer Networks and different
CO 2	Transmission Media.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Computer network internet effectively.
CO 5	Understand various protocol layers and inner operations.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	2 Year	Semester:	4
Course title:	Operating System	Course code	23040401
Course type:	Engineering Science	Course Credit	4

CO 1	Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and their communication.
CO 2	Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and the communication.
CO 3	Differentiate Protocols which play a major role in providing
CO 4	Discuss the storage management policies with respect to different storage management
	technologies
CO 5	Analyze the memory management and its allocation policies

INDUCTOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	2Year	Semester:	4
Course title:	Object Oriented Programming with C++	Course code	23040402
Course type:	Engineering Science	Course Credit	5

CO 1	Codes basic programs in Java programming language.
CO 2	Prints to the screen in Java language.
CO 3	Makes relational operations in Java.
CO 4	Constructs loops in Java.
CO 5	Defines arrays in Java and uses them.

NDIPES THESE LINEVERSHIY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	2Year	Semester:	4
Course title:	System Software	Course code	23040403
Course type:	Engineering Science	Course Credit	4

CO 1	To understand the relationship between system software and machine
CO 2	To understand architecture.
CO 3	To understand the processing of an HLL program for execution on a computer.
CO 4	To understand the process of scanning and parsing.
CO 5	To know the design and implementation of assemblers, macro processor, linker

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	2 Year	Semester:	4
Course title:	Computer Organization and MicroProcessor	Course code 23070401	
Course type:	Engineering Science	Course Credit	4

CO 1	To know the background of internal communication of computer
CO 2	To have better idea on how to write assemble language programs
CO 3	To be clear with memory management techniques
CO 4	To better with IO devices communication with processor
CO 5	To notice how to perform computer arithmetic operations

Semester: 5

Program:	Bachelor of Engineering Branch:		CE CTIS
Year:	3 Year	Semester:	5
Course title:	Object Oriented Programming with JAVA	Course code	23040501
Course type:	Engineering Science	Course Credit	6

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	5
Course title:	Theory of Computation	Course code	23040502
Course type:	Engineering Science	Course Credit	6

CO 1	To give an overview of the theoretical foundations of computer science from
CO 2	the perspective of formal languages
CO 3	To illustrate finite state machines to solve problems in computing
CO 4	To explain the hierarchy of problems arising in the computer sciences.
CO 5	To familiarize Regular grammars, context frees grammar

INDUCES PERSONAL LENGUERS FLY FOR STARTUP

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	5
Course title:	Information Network & Cyber Security	Course code	23040503
Course type:	Engineering Science	Course Credit	4

CO 1	Identify some of the factors driving the need for network security.
CO 2	Identify and classify particular examples of attacks.
CO 3	Define the terms vulnerability, threat and attack.
CO 4	Identify physical points of vulnerability in simple networks.
CO 5	Identify the need for network security.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	5
Course title:	Web Technology	Course code	23040504
Course type:	Engineering Science	Course Credit	4

CO 1	Students are able to develop a dynamic webpage by the use of java script and
CO 2	DHTML.
CO 3	Students will be able to write a well formed / valid XML document.
CO 4	Students will be able to connect a java program to a DBMS and perform insert,
CO 5	DHTML update and delete operations on DBMS table.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	5
Course title:	Computer Graphics and Visulization	Course code	23040506
Course type:	Engineering Science	Course Credit	4

CO 1	Understand the basics of computer graphics, different
CO 2	Graphics systems and applications of computer graphics.
CO 3	Discuss various algorithms for scan conversion and
CO 4	Filling of basic objects and their comparative analysis.
CO 5	Use of geometric transformations on graphics objects

+91-95123 43333 | info@swarrnim.edu.in | www.swarrnim.edu.in

Semester 6

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	6
Course title:	Wireless Network	Course code	23040601
Course type:	Engineering Science	Course Credit	4

CO 1	Conversant with the latest 3G/4G and Wi-MAX networks and its architecture.
CO 2	Design and implement wireless network environment for any application using latest
CO 3	Wireless protocols and standards.
CO 4	Implement different type of applications for smart phones and mobile devices with
CO 5	latest network strategies

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	6
Course title:	Compiler Design	Course code	23040602
Course type:	Engineering Science	Course Credit	4

CO 1	Realize basics of compiler design and apply for real time applications.
CO 2	To introduce different translation languages
CO 3	To understand the importance of code optimization
CO 4	To know about compiler generation tools and techniques
CO 5	To learn working of compiler and non compiler applications

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	6
Course title:	Cloud Computing	Course code	23040603
Course type:	Engineering Science	Course Credit	4

CO 1	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came
	about, the characteristics, advantages and challenges brought about by the various models and
	services in cloud computing.
CO 2	Apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and
	cost.
CO 3	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and
	outline their role in managing infrastructure in cloud computing.
CO 4	Analyze various cloud programming models and apply them to solve problems on the cloud.
CO 5	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came
	about, the characteristics, advantages and challenges brought about by the various models and
	services in cloud computing.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	6
Course title:	Data Mining and Warehousing	Course code	23040604
Course type:	Engineering Science	Course Credit	4

CO 1	Be familiar with mathematical foundations of data mining tools
CO 2	Understand and implement classical models and algorithms in data warehouses and
CO 3	data mining discovered by association rule
CO 4	Characterize the kinds of patterns that can be discovered by association rule
CO 5	data mining, classification and clustering.

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	3 Year	Semester:	6
Course title:	Advance JAVA	Course code	23040606
Course type:	Engineering Science	Course Credit	5

CO 1	Able to solve real world problems using OOP techniques.
CO 2	Able to understand the use of abstract classes.
CO 3	Able to solve problems using java collection framework and I/o classes.
CO 4	Able to develop multithreaded applications with synchronization.
CO 5	Able to develop applets for web applications.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Semester 7

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	4 Year	Semester:	7
Course title:	Artificial Intelligence	Course code	23040701
Course type:	Engineering Science	Course Credit	5

CO 1	Develop mathematical thinking and problem solving skills associated with research and writing proofs.
CO 2	Get exposure to a wide variety of mathematical concepts used in computer science discipline like probability.
CO 3	Use Graph Theory for solving problems.
CO 4	Acquire basic knowledge of sampling and estimation.
CO 5	Understand basic concepts of hypothesis
	STARTUP & INNOVATION

Program	Bachelor of Engineering	Branch:	CE CTIS
Year:	4 Year	Semester:	7
Course title:	Python Programming	Course code	23040702
Course type:	Engin <mark>eering Science</mark>	Course Credit	5

CO 1	Create your first program in Python IDLE
CO 2	Implement OOPs concepts in your programming
CO 3	Use Arrays, and Data structures
CO 4	Create an application with the support of graphics in Python
CO 5	Implement error handling

Semester: 8

Program:	Bachelor of Engineering	Branch:	CE CTIS
Year:	4 Year	Semester:	8
Course title:	Programming with XML & JSON	Course code	23040802
Course type:	Engineering Science	Course Credit	6

CO 1	Students are able to develop a dynamic webpage by the use of java script and DHTML.
CO 2	Students will be able to write a well formed / valid XML document.
CO 3	Students will be able to connect a java program to a DBMS and perform insert, update.
CO 4	Delete operations on DBMS table.
CO 5	Students will be able to write a server side java application called Servlet to catch form data

SWARRNIM INSTITUTE OF TECHNOLOGY

Program Name: Bachelor of Technology in Mechanical Engineering

Semester: I

Subject Name: Maths-I Subject Code: 23000001 Course Outcomes (COs):

CO1	Analyze and manipulate infinite sequences and series.
CO2	Evaluate limits involving indeterminate forms.
CO3	Understand and apply techniques for improper integrals.
CO4	Analyze functions of several variables and solve optimization problems.
CO5	Solve systems of linear equations using matrices and determinants.
CO6	Analyze eigenvalues and eigenvectors for linear transformations and matrices.

Subject Name: Fundamentals of Computer Programming Subject Code: 23000004

Course Outcomes (COs):

CO1	Apply fundamental principles of problem solving in software engineering.
CO2	Apply basic programming principles using C language.
CO3	Apply basic C program structure in software development
CO4	Prepare graduates for professional careers in roles including, but not limited to, the following: computer programmer, software engineer, software systems designer, software applications developer, technical software project lead, computer systems analyst, computer systems programmer, software applications tester and maintainer.
CO5	To prepare graduates with the knowledge and skills to do advanced studies and research in computer science and related engineering and scientific disciplines
CO6	To equip graduates with the communication skills, both oral and written, to become an effective team- oriented problem solver as well as an effective communicator with nontechnical stakeholders in computer and software systems development, maintenance and administration.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Subject Name: Elements of Electrical Engineering Subject Code: 23000012

Course Outcomes (COs):

CO1	Define electrical current, potential difference, power and energy, sources of electrical energy, resistance and
201	its behavior with temperature.
CO2	Understand the different types of wires, cables, connectors & Different types of wiring Different types of
CO2	domestic and industrial wiring.
CO3	Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
CO4	Analyze the steady state behavior of single phase and three phase AC electrical circuits.
CO5	Compare various protective devices of working principle, usage and construction such as fuse,
003	MCB, ELCB & amp; Relays.
CO6	Design and development of varies Electrical Wiring and electronics miniproctes.

Subject Name: Elements of Mechanical Engineering

Subject Code: 23000003 Course Outcomes (COs):

CO1	Discribe the various sources of energy and basic terminology of Mechanical engineering.
CO2	Make calculations for commonly used working fluids i.e. ideal gases and steam.
CO3	Analyze various heat engine cycles and understand construction and working of IC engines.
CO4	Discuss working and applications of steam boilers and various energy conversion systems.
CO5	Discuss various power transmission elements and properties of various engineering materials with their applications.

Subject Name: Environmental Studies

Subject code: 23000006

CO1	Describe natural resources, importance of ecosystem and conservation of biodiversity with respect to multiple disciplines.
CO2	Explain causes, effects, solutions for various pollution problems and its minimization strategies.
CO3	Differentiate between requirements of laws and regulations for environmental conservation and applicability of legislations in society and industries.
CO4	Discuss environmental ethics and their implementation for betterment of environment and human life.

Subject Name: Orientation Program in Startup and Entrepreneurship

Subject code: 12300001 Course outcome:

CO1	Apply the basic principles of entrepreneurship
CO2	Distinguish the concepts of the entrepreneurship ecosystem, entrepreneurship education, and various entrepreneurial opportunities.
CO3	Understanding various individual attributes of entrepreneurial personality traits, entrepreneurial characteristics, behavioural attributes and importance of creativity and innovation.
CO4	Develop an understanding of best techniques for idea generation and opportunities exploration.

Subject Name: Workshop Subject code: 23000029 Course outcome:

CO1	Understand applications of hand tools and power tools and operations of machine tools.
CO2	Understand the operations of machine tools.
CO3	Select the appropriate tools required for specific operation.
CO4	Comprehend the safety measures required to be taken while using the tools.
CO5	Prepare Fitting, Carpentry, Plumbing, Welding, and Tin-smithy Jobs.

Semester-II

Subject Name: ENGINEERING PHYSICS

Subject code: 23000005 Course outcome:

CO1	To acquire knowledge of calculus which are integral part of any branch of Physics
CO2	Students learn accurately how to describe motion of objects, planetary motions,
CO2	gravitation etc. Understand the motion of objects in different frame of references
CO3	To learn about basic concepts of electrical charges and currents and their properties
CO4	Student learn about various types of waves and their propagation.
CO5	To understand the principle of calorimetry
CO6	To know about Radiation and its nature, old quantum theory, concept of wave-particle duality and de
C00	Broglie hypethesis.
	To study complex analysis, Cauchy Riemann conditions, Analyticity, Cauchy Integral formula,
CO7	Laurent and Taylor series expansion and definite integrals using contour
	integration.

Subject Name: Communication skills

Subject code: 23000008

CO1	Students will become master of four communication skills.
CO2	They feel confident in speaking and writing English language.
СОЗ	Students will be able to improve the language skills i.e. Listening Skill, Speaking Skill, Reading Skill, and Writing Skill (LSRW).
CO4	To make them learn about life skills and soft skills.

Subject Name: Maths II Subject code: 23000010 Course outcome:

CO1	Understand vectors in RnRn and operations involving linear combinations.
CO2	Identify subspaces and determine basis and dimension and Perform coordinate
002	transformations and understand the change of basis.
CO3	Understand linear transformations and their properties and represent linear
003	transformations with matrices and explore the concept of similarity.
CO4	Apply inner product spaces to least squares approximation and diagonalization of
004	symmetric matrices and Explore applications of quadratic forms and optimization.
CO5	Apply double and triple integrals over different regions and Utilize Fubini's theorem and
	change of variables in multiple integrals.
CO6	Apply integration techniques to calculate volumes of various solids.

Subject Name: Engineering Graphics

Subject code: 23000011

Course outcome:

CO1	Describe the fundamental methods of engineering drawing, sketching and drafting.
CO2	Understanding the object through orthographic projections.
CO3	Construct basic and intermediate geometry and application of engineering curves.
CO4	Enhance visualization skills for developing new products.
CO5	Develop new products through technical communication skill in the form of communicative drawings.
CO6	Develop the theory of orthographic projection and views.

Subject Name: Elements of Civil Engineering

Subject code: 23000015

CO1	Carry out simple land survey to prepare maps with existing details.
CO2	Find out area of irregular shaped plane figures.
CO3	Understand building plan elevation and section.
CO4	Get acquainted with construction materials.
CO5	Get acquainted with hydrological cycle and hydraulic structures.
CO6	Get acquainted with mass transportation systems.

Subject Name: BASIC PROGRAM IN ENTREPRENURESHIP

Subject code: 12300002 Course outcome:

CO1	Develop an understanding of best techniques for idea generation, opportunities exploration, and market research.
CO2	Check technical, market, financial and other types of Feasibility of their business idea
СОЗ	Develop business model to describe the rationale of how an organization creates, delivers, and captures value
CO4	Conduct the customer's survey to know the need of their business idea.

INDUSTRIAL UNIVERSITY FOR STARTUP

Semester: III

Subject Name: Maths III Subject code: 23000015 Course outcome:

CO1	To have a rigorous understanding of the concept of limit of a function.
CO2	The geometrical properties of continuous functions on closed and bounded intervals.
CO3	Extensively about the concept of differentiability using limits, leading to a better understanding for applications.
CO4	The applications of mean value theorems and Taylor's theorem.
CO5	Employ De Moivre's theorem in a number of applications to solve numerical problems

Subject Name: Mechanics of Solid

Subject code: 23080301 Course outcome:

CO1	Explain the basic concepts of Engineering Mechanics,
CO2	to evaluate the variations of shear force and bending moment in different kinds of beams
CO3	Evaluate the shear stress and angle of deflection in a shaft subjected to torque.
CO4	Evaluate Bending and shear stresses in different shaped channels.
CO5	Determine the buckling in the columns using different theories

Subject Name: Material Science and Metallurgy

Subject code: 23080302

CO1	Application of knowledge relating the composition, structure and processing of materials to their uses.
CO2	The Study materials that covers metals, ceramics, polymers, and combinations of materials or composites
CO3	Able to investigate the relationship between structure of materials and their properties.
CO4	Able to understand the new developments such as nano-science and nanotechnology e forefront of the studies
CO5	continue to propel materials science and engineering to the forefront of the studies

Subject Name: Manufacturing Process I

Subject code: 23080303 Course outcome:

CO1	Understand classification, scope and applications of manufacturing methods used in industries.
CO2	Explain the different casting methods with their process details, applications and limitations.
CO3	Understand process details of rolling, forging, extrusion and drawing operations.
CO4	Classify and explain in detail different welding methods with brief introduction to brazing and soldering.
CO5	Understand powder metallurgy process with advantages, limitations and industrial applications.

Subject Name: Kinematics of Machines

Subject code: 23080304

Course outcome:

CO1	Classify and solve for mobility of planar mechanisms
CO2	Perform kinematic synthesis and analysis of planar mechanisms
CO3	Construct and analyze cam profiles for a specified motion of the follower
CO4	Analyze different types of gear trains
CO5	Model and analyze planar mechanisms using software package

Subject Name: Electriacal Technology

Subject code: 23080305 Course outcome:

CO1	Understand the basic concepts of DC circuits and Magnetic circuits and also able to solve problems
	related to DC and magnetic circuits.
CO2	Analysis of Single Phase and three phase AC Circuits and the representation of alternating quantities and
CO2	also determining the power and other parameters in these circuits
CO3	Explain the construction, basic principle of operation, applications and also determine performance
	parameters of electrical Machines.
CO4	Practice Electrical Safety Rules & standards and types of electrical wiring and domestic earthing.

Subject Name: Foundation Program in Entrepreneurship

Subject code: 12300003 Course outcome:

CO1	Demonstrate different Python data types and their structures
CO2	Interpretation of the role of python in steps involved in data science
CO3	Illustrate the use of various operations for data cleansing and transformation
CO4	Analyze data visualization tools for data interpretation and insights of data
CO5	Perform data Wrangling with Scikit-learn applying exploratory data analysis

Semester IV

Subject Name: Maths IV Subject code: 23000018 Course outcome:

CO1	Extract the solution of differential equations of the first order and of the first degree by variables
	separable, Homogeneous and Non-Homogeneous methods
CO2	Find a solution of differential equations of the first order and of a degree
	higher than the first by using methods of solvable for p, x and y
CO3	Compute all the solutions of second and higher order linear differential
	equations with constant coefficients, linear equations with variable coefficients.
CO4	Solve simultaneous linear equations with constant coefficients and Total Differential equations
CO5	Form partial differential equations
CO6	Find the solution of First order partial differential equations for some standard types.

Subject Name: Mechanical Measurement & Metrology

Subject code: 23090402 Course outcome:

CO1	Explain the basics knowledge of measurements, metrology and measuring devices.
CO2	Understand the principle of linear and angular measuring instruments
CO3	Fundamentals of various methods for the measurements of screw threads, surface roughness parameters and working of optical measuring instruments.
CO4	Understand various advanced measuring devices and machine tool metrology
CO5	Understand and able to use various devices for measuring torque, force, strain, stress and temperature.

Subject Name: Manufacturing Process-II

Subject code: 23090404 Course outcome:

CO1	Understand basic concepts of Manufacturing processes.
CO2	To understand Metal casting process, patterns, defect and its applications.
CO3	To understand different types of welding process, soldering and brazing process.
CO4	To understand metal shaping and forming process.
CO5	Understanding of Plastic, Ceramic and Glass processing techniques.

Subject Name: Engineering Thermodynamics

Subject code: 23090401 Course outcome:

CO1	Explain basic concepts, Zeroth and First Laws of Thermodynamics.
CO2	Describe Second Law of Thermodynamics and its corollaries
CO3	Estimate various thermodynamic properties of pure substance, ideal gas and mixture
CO4	Derive various thermodynamic relations such as Joule-Thomson, Clausius Clapeyron, etc.
CO5	Analyse various Vapour power cycles and effect of operating parameters on their performance.

Subject Name: Machine Design and Industrial Drafting

Subject code: 23090403

Course outcome:

CO1	To understand theory of failures.
CO2	Understand fundamentals of Beams and Column.
CO3	To design shafts, keys and couplings.
CO4	To understand design of power screws and threaded joints.
CO5	Basic understanding of Tolerances, Limits and Fits.

Subject Name: Intermediate Program in Entrepreneurship

Subject code: 12300004 Course outcome:

CO1	Demonstrate the various features of microprocessor, memory and I/O devices
CO2	Identify the hardware elements of 8085 microprocessor.
CO3	Select appropriate 8085 instructions based on size and functions to write an assembly language program
CO4	Design different interfacing system using concepts of memory and I/O interfacing.
CO5	Demonstrate the features of advance microprocessors.

Semester: V

Subject Name: Fluid Mechanics

Subject code: 23090501 Course outcome:

CO1	To understand fluids and its properties.
CO2	Understand laminar and turbulent flow through pipes and parallel plates.
CO3	Understand various types of flow, Mass Momentum and energy conservation and related equations.
CO4	Explain various applications of Bernoulli's Equation, Notches and Weirs, Orifices and Mouthpieces
CO5	Understand different types of flow through pipes, Viscous and turbulent flow.

Subject Name: Design of Machine Elements

Subject code: 23090502 Course outcome:

CO1	Introduction to design, material and its properties.
CO2	To design against fluctuating loads, S-N diagram, Soderberg and Gerber criteria.
CO3	To design thin and spherical vessels.
CO4	To understand design procedure of belt and chain drives.
CO5	To understand different types of springs, stresses and different loading condition of spring.

Subject Name: Heat Transfer Subject code: 23090503

CO1	Explain the governing laws and modes of heat transfer
CO2	Compute temperature distribution and heat transfer rate in steady and unsteady state heat conduction
CO3	Interpret and analyse natural and forced convective heat transfer with dimensional analysis
CO4	Analyse the performance of heat exchangers under different flow conditions using LMTD and NTU method.
CO5	Analyse radiative heat transfer between two or more black/gray bodies

Subject Name: Theory of Machine

Subject code: 23090504 Course outcome:

CO1	Explain Kinematic Chain, Mechanisms and their Inversions; analyze velocity and acceleration of various mechanisms.
CO2	Solve problem-related to friction. Explain the principle and applications of clutch and brake.
CO3	Explain the principle and applications of a gyroscope.
CO4	To understand different types of Flywheels.
CO5	To study about different types Governors and their force analysis.

Subject Name: Control Engineering

Subject code: 23090505 Course outcome:

CO1	Understand basic concepts of control system
CO2	Modelling of Translational and rotational, mechanical, electrical and thermal system.
CO3	To understand time response analysis and state space analysis.
CO4	To understand different types of hydraulic and pneumatic control systems.

Subject Name: Case Study Subject code: 23000027 Course outcome:

CO1	By analysing case studies, students develop strategies to address complex problems.
CO2	Students enhance their ability to gather, assess, and learn how to conduct thorough investigations into specific issues.
CO3	Students learn to evaluate and synthesize information from various sources.
CO4	Presenting findings and writing reports.
CO5	Engaging in discussions are integral parts of case studies, helping students improve their ability to articulate their analysis and recommendations clearly.

Subject Name: Intellectual Property Rights

Subject code: 12300005 Course outcome:

CO1	Evaluate strength and limitation of cloud computing
CO2	Analyze different cloud depoly and services architecture model
CO3	Understand various enterprise application in cloud computing
CO4	Apply the virtualization concepts
CO5	Analyze data security mechanism and SLA management in cloud

Semester VI

Subject Name: Dynamics of Machinery

Subject code: 23090601 Course outcome:

CO1	To understand about Balancing of Rotating Mass and Reciprocating Engines
CO2	To describe free and forced vibration of systems.
CO3	To derive equations of motion for two degree system and multidegree system.
CO4	Introduction and understanding of vibration measurement and analysis devices/
CO5	Dynamic analysis of force-closed cam follower.

Subject Name: Fluid Power Engineering

Subject code: 23090602 Course outcome:

CO1	To understand about Balancing of Rotating Mass and Reciprocating Engines
CO2	To describe free and forced vibration of systems.
CO3	To derive equations of motion for two degree system and multidegree system.
CO4	Introduction and understanding of vibration measurement and analysis devices/
CO5	Dynamic analysis of force-closed cam follower.

Subject Name: Production Technology

Subject code: 23090603 Course outcome:

CO1	To understand basic principle of metal cutting and handson training on lathe machine.	
CO2	Understanding of Thermal aspects in machining, Gear and thread manufacturing techniques.	
CO3	Classification of presses, Jigs and fixtures and their applications.	
CO4	To study about different non-conventional machining techniques.	
CO5	Use appropriate instruments and techniques to measure the cutting forces during turning, milling and drilling	

Subject Name: Refrigeration air Conditioning

Subject code: 23090604

Course outcome:

CO1	Analyse the reversed Carnot cycle and vapour compression refrigeration cycle (VCR).
CO2	Select the air-refrigeration systems for aircraft, and vapour absorption refrigeration system for rural and remote areas
CO3	Identify the Psychrometric processes for different applications and design the parameters of air-conditioning system as per standards.
CO4	Understand the human comfort, ASHRAE chart and concept of effective temperature.
CO5	Estimate cooling load and heating load considering human comfort and optimize the air conditioning system as per requirements.

Subject Name: Industrial Engineering

Subject code: 23090605 Course outcome:

CO1	To understand location, selection of plant layout.
CO2	Describe production planning and control.
CO3	To demonstrate productivity, applications, work and motion study.
CO4	To understand job evaluation, wage plan, industrial legislation and statistical quality control.

Subject Name: Seminar Subject code: 23000026 Course outcome:

CO1	Present the latest technologies and recent advancements in technical field.
CO2	Identify grey areas of his/ her interpersonal skills by critical evaluation of presentation techniques and further
CO3	Communicate effectively verbally and or non-verbally for knowledge enhancement.
CO4	Use the internet, books, resource persons and library effectively to retrieve the required information.
CO5	Cite the references of the originating sources of concept, data and information.

Semester: VII

Subject Name: Computer Aided Design & Manufacturing

Subject code: 23090701 Course outcome:

CO1	To analize 1-D concept, Trusses and beams.
CO2	To visualize the role of computer in manufacturing, types of manufacturing and CIM.
CO3	To understand different types of NC/CNC machine tools.
CO4	To understand concept of Group Technology and CAPP
CO5	To describe component of FMS and need of FMS.

Subject Name: Power Plant Engineering

Subject code: 23090702 Course outcome:

CO1	Discuss the load duration curves, site selection and economics of power plants.
CO2	Describe the effect of various components and steam conditions on the performance of steam power plant.
CO3	Analyse the performance of Steam turbine power plant under various operating and geographical conditions.
CO4	To describe working of different types of nozzles, turbines, condensors and cooling towers.
CO5	To study about nuclear power plant and gas turbine power plant.

Subject Name: Operation Research

Subject code: 23090703

CO1	To understand requirement of Linear programming, assumptions in LP.
CO2	To solve problems related to Game theory and transportation problems.
CO3	To solve problems related to replacement theory and Queing theory.
CO4	To implement CPM and PERT in industry.
CO5	To solve problems based on Decision theory.

Subject Name: Machine Design

Subject code: 23090704 Course outcome:

CO1	Identify the factors for engineering components design and analyze various members subjected to direct stress.
CO2	Design various members such as beams, levers, laminated springs for bending and stiffness.
CO3	Design various machine components under torsion such as shafts, shaft couplings, and keys.
CO4	Design various threaded fasteners and power screw components.
CO5	Design curved machine components.

Subject Name: Metal Forming Analysis

Subject code: 23090712 Course outcome:

CO1	Explain and interpret the basics of various forming processes.
CO2	Explain and apply the yield criteria and governing equations of plasticity.
CO3	Apply the slab method of metal forming process analysis.
CO4	Apply the Slip-line field theory of metal forming process analysis.
CO5	Apply the upper and lower bound techniques of metal forming process analysis.

Subject Name: Project -1 Subject code: 23000023 Course outcome:

CO1	Define a problem and review literature to identify the gaps, objectives & scope of the work.
CO2	Analyse the problems of mechanical engineering to formulate objectives of project.
CO3	Design a system, component, or process to meet the desired needs of social and sustainability.
CO4	Demonstrate the techniques, skills, and modern engineering tools necessary for engineering practice.
CO5	Prepare a professional report as per recommended format and defend the work.

Semester: VIII

Subject Name: Project - II Subject code: 23000025 Course outcome:

CO1	Define a problem and review literature to identify the gaps, objectives & scope of the work.
CO2	Analyse the problems of mechanical engineering to formulate objectives of project.
CO3	Design a system, component, or process to meet the desired needs of social and sustainability.
CO4	Demonstrate the techniques, skills, and modern engineering tools necessary for engineering practice.
CO5	Prepare a professional report as per recommended format and defend the work.

Subject Name: Industrial Training

Subject code: 23000028 Course outcome:

CO1	Participate in the projects in industries during his or her industrial training.
CO2	Describe use of advanced tools and techniques encountered during industrial training and visit.
CO3	Interact with industrial personnel and follow engineering practices and discipline prescribed in industry.
CO4	Develop awareness about general workplace behavior and build interpersonal and team skills.
CO5	Prepare professional work reports and presentations.

Subject Name: Energy Conservation and Management

Subject code: 23000023

CO1	Describe the basics of energy management, energy demand management and energy auditing.
CO2	Highlight the need for energy conservation and describe the resource development for sustainability.
CO3	Identify the need for energy management in different sectors.
CO4	Forecast the energy demand for different sectors and integrate different energy resources to meet the energy demand.
CO5	Describe various renewable energy resources and their management for cleaner production.

SWARRNIM INSTITUTE OF TECHNOLOGY

DEPARTMENT: MASTER OF TECHNOLOGY (CYBER SECURITY)

Semester: 1

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	1
Course title:	Digital Forensics	Course code	26050101
Course type:	Engineering Science	Course credit:	3

CO 1	Ability to explain key concepts of digital forensics and the digital crime scene, including legal considerations.
CO 2	Demonstrate competence in acquiring and preserving digital evidence using forensic tools and adhering to legal procedures.
CO 3	Ability to use forensic software and hardware tools to recover, analyze, and present digital evidence.
CO 4	Analyze legal cases, apply relevant laws, and follow ethical guidelines while working with digital evidence.
CO 5	Create comprehensive forensic reports and present digital evidence findings in a clear, concise, and legally sound manner.

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	1
Course title:	Cyber Security	Course code	26050102
Course type:	Engineering Science	Course credit:	4

CO 1	Understand the foundational principles of cyber security and risk management.
CO 2	Analyze and implement security protocols to protect networks and information systems.
CO 3	Evaluate various types of cyber threats and vulnerabilities, and develop mitigation strategies.
CO 4	Design secure systems and applications following best practices and compliance standards.
CO 5	Apply forensic techniques to investigate security breaches and support incident response efforts.

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	1
Course title:	Cloud Computing	Course code	26050103
Course type:	Engineering Science	Course credit:	3

CO 1	Understand the core concepts of cloud computing, including service and deployment models.
CO 2	Analyze cloud architecture for scalability, reliability, and cost-efficiency.
CO 3	Develop and deploy cloud-based applications using popular cloud platforms.
CO 4	Assess cloud security risks and apply appropriate security measures.
CO 5	Optimize cloud resources for performance and cost management.

STARTUP & INNOVATION UNIVERSITY

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	1
Course title:	Data Mining and Warehousing	Course code	26050104
Course type:	Engineering Science	Course credit:	3

CO 1	Understand data mining concepts and the role of data warehousing in analytics.
CO 2	Apply data pre-processing techniques for mining.
CO 3	Implement various data mining algorithms for classification, clustering, and association.
CO 4	Evaluate and interpret the results of data mining models.
CO 5	Design and optimize data warehouse systems for efficient querying and reporting.

INDUCT FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	1
Course title:	Research Skills	Course code	2601001
Course type:	Engineering Science	Course credit:	2

CO 1	Identify and define rese <mark>arch problems effectively.</mark>
CO 2	Apply appropriate research methodologies and tools.
CO 3	Analyze and interpret research data critically.
CO 4	Develop coherent and well-structured research reports.
CO 5	Demonstrate ethical standards in conducting research.

STARTUP & INNOVATION UNIVERSITY

INDIA'S FIRST UNIVERSITY FOR STARTUP

Semester: 2

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	2
Course title:	Network Programming	Course code	26300201
Course type:	Engineering Science	Course credit:	4

CO 1	Understand and implement fundamental concepts of network protocols and communication models.
CO 2	Develop network-based applications using socket programming and APIs.
CO 3	Analyze and troubleshoot network issues and optimize performance.
CO 4	Design secure communication systems with encryption and authentication techniques.
CO 5	Apply advanced techniques in distributed systems and real-time network programming.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	2
Course title:	Ethical Hacking	Course code	26300202
Course type:	Engineering Science	Course credit:	5

CO 1	Understand key concepts of ethical hacking and its role in cybersecurity.
CO 2	Analyze vulnerabilities in computer systems and networks.
CO 3	Apply ethical hacking techniques to assess security threats.
CO 4	Implement penetration testing strategies using industry-standard tools.
CO 5	Develop risk mitigation strategies and security policies.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	2
Course title:	Cryptography and Biometrics	Course code	26300203
Course type:	Engineering Science	Course credit:	3

CO 1	Understand and apply fundamental encryption techniques and cryptographic protocols.
CO 2	Analyze the security of cryptographic systems and algorithms.
CO 3	Understand biometric recognition principles and techniques.
CO 4	Implement biometric authentication methods for security systems.
CO 5	Assess the privacy and ethical considerations of biometric data usage.

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	2
Course title:	Soft Computing	Course code	26300204
Course type:	Engineering Science	Course credit:	3

CO 1	Understand the fundamental concepts of soft computing techniques.
CO 2	Apply neural networks and fuzzy logic for problem-solving in real-world scenarios.
CO 3	Design evolutionary algorithms for optimization tasks.
CO 4	Analyze hybrid systems combining neural, fuzzy, and evolutionary models.
CO 5	Implement soft computing tools for engineering and scientific applications.

UNIVERSITY

Program:	Master of Engineering	Branch:	CS
Year:	1 st	Semester:	2
Course title:	Softwar <mark>e Project</mark> Management	Course code	26300206
Course type:	Engineering Science	Course credit:	3

CO 1	Understand project management principles and their application in software development.
CO 2	Analyze risk management strategies and deve <mark>lo</mark> p mitigation plans.
CO 3	Apply resource management techniques for optimizing project efficiency.
CO 4	Utilize project scheduling tools for effective project execution and control.
CO 5	Demonstrate leadership and communication skills in managing software project teams.

Semester: 3

Program:	Master of Engineering	Branch:	CS
Year:	2 nd	Semester:	3
Course title:	Machine Learning	Course code	24060301
Course type:	Engineering Science	Course credit:	3

CO 1	Understand the fundamental concepts of machine learning and its applications.
CO 2	Apply supervised learning algorithms for classification and regression tasks.
CO 3	Analyze and implement unsupervised learning techniques like clustering.
CO 4	Evaluate machine learning models using performance metrics and cross-validation.
CO 5	Develop and deploy machine learning solutions for real-world problems.

Program:	Master of Engineering	Branch:	CS
Year:	2 nd	Semester:	3
Course title:	Seminar 1	Course code	24000001
Course type:	Engineering Science	Course credit:	3

CO 1	Demonstrate a sound technical knowledge of their selected seminar topics.
CO 2	Undertake problem identification, formulation and solution.
CO 3	Desing engineering solutions to complex problems utilizing a system approach.
CO 4	Communicate with engineers and the community at large.
CO 5	Demonstrate the knowledge, skills, and attitudes of a professional engineer.

STARTUP & INNOVATION UNIVERSITY

Program:	Master of Engineering	Branch:	CS
	- 25		_=
Year:	$2^{\rm nd}$	Semester:	3
Course title:	Internal Review	Course code	24000002
Course type:	Engineering Science	Course credit:	3

CO 1	To develop presentation skills
CO 2	To understand literature review, report writing skills
CO 3	To understand different software used for research.
CO 4	TO learn any one design and development of software.
CO 5	To enhance reading and writing research paper skills.

STARTUP & INNOVATION UNIVERSITY

INDUA'S FIRST UNIVERSITY FOR STARTU

Program:	Master of Engineering	Branch:	CS
Year:	2 nd	Semester:	3
Course title:	Dissertation Phase I	Course code	26060104
Course type:	Engineering Science	Course credit:	4

CO 1	Demonstrate the ability to identify and formulate research problems.
CO 2	Apply advanced engineering knowledge to solve complex problems.
CO 3	Design and implement experimental or simulation studies for data analysis.
CO 4	Interpret research findings to develop innovative solutions.
CO 5	Communicate technical information effectively through written and oral presentations.

INDUCT FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	CS
Year:	$2^{\rm nd}$	Semester:	4
Course title:	Seminar II	Course code	24000006
Course type:	Engineering Science	Course credit:	3

CO 1	Demonstrate in-depth knowledge on a selected research topic through critical analysis.
CO 2	Develop effective communication and presentation skills for technical subjects.
CO 3	Synthesize relevant literature and research findings to support seminar discussions.
CO 4	Apply research methodologies to identify and address complex engineering problems.
CO 5	Exhibit independent learning and professional ethics in research presentation.

Program:	Master of Engineering	Branch:	CS
Year:	2 nd	Semester:	4
Course title:	External Mid Sem Review	Course code	24000004
Course type:	Engineering Science	Course credit:	5

CO 1	Demonstrate progress and understanding of ongoing project/research work.
CO 2	Apply advanced technical concepts to solve identified problems.
CO 3	Integrate feedback from reviewers for project improvement.
CO 4	Present technical work effectively to a panel of experts.
CO 5	Identify areas for further research or development in the chosen topic.

Program:	Master of Engineering	Branch:	CS
Year:	2 nd	Semester:	4
Course title:	Dissertation Phase II	Course code	2400005
Course type:	Engineering Science	Course credit:	4

CO 1	Demonstrate advanced research capabilities through critical analysis and problem-solving in
	the chosen topic.
CO 2	Apply specialized knowledge to design and implement innovative engineering solutions.
CO 3	Conduct in-depth experiments and data analysis to validate research findings.
CO 4	Communicate research outcomes effectively through presentations and technical reports.
CO 5	Exhibit project management skills in executing the dissertation within time and resource constraints.

St. Innoverto Cardinagas of International St. Cardinagas of In

NUMBER OF STARTUP

SWARRNIM INSTITUTE OF TECHNOLOGY

DEPARTMENT: MASTER OF TECHNOLOGY (MACHINE LEARNING AND ARTIFICIAL INTELLINGENCE)

Semester: 1

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	1
Course title:	Digital Forensics	Course code	26060101
Course type:	Engineering Science	Course credit:	3

CO 1	Ability to explain key concepts of digital forensics and the digital crime scene, including
	legal considerations.
CO 2	Demonstrate competence in acquiring and preserving digital evidence using forensic tools
	and adhering to legal procedures.
CO 3	Ability to use forensic software and hardware tools to recover, analyze, and present digital
	evidence.
CO 4	Analyze legal cases, apply relevant laws, and follow ethical guidelines while working with
	digital evidence.
CO 5	Create comprehensive forensic reports and present digital evidence findings in a clear,
	concise, and legally sound manner.
	The same and the s

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	1
Course title:	Artificial Intelligence	Course code	26060102
Course type:	Engineering Science	Course credit:	3

CO 1	Ability to explain core concepts of Artificial Intelligence, including the history, foundations,
	and key approaches in the field.
CO 2	Apply AI techniques such as search algorithms, heuristics, and optimization strategies to solve complex problems.
CO 3	Ability to implement machine learning algorithms, including supervised and unsupervised learning methods, and evaluate their performance.
CO 4	Design and develop AI systems using modern tools and frameworks to address real-world problems.
CO 5	Ability to critically evaluate the ethical, legal, and social impacts of AI technologies and apply responsible AI principles.

UNIVERSITY

INDIA'S FIRST UNIVERSITY FOR STARTUP

SP& Innov

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	1
Course title:	Cloud Computing	Course code	26060103
Course type:	Engineering Science	Course credit:	4

CO 1	Understand the core concepts of cloud computing, including service and deployment models.
CO 2	Analyze cloud architecture for scalability, reliability, and cost-efficiency.
CO 3	Develop and deploy cloud-based applications using popular cloud platforms.
CO 4	Assess cloud security risks and apply appropriate security measures.
CO 5	Optimize cloud resources for performance and cost management.

NIDE 5 FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	1
Course title:	Data Mining and Warehousing	Course code	26060104
Course type:	Engineering Science	Course credit:	4

CO 1	Understand data mining concepts and the role of data warehousing in analytics.
CO 2	Apply data pre-processing techniques for mining.
CO 3	Implement various data mining algorithms for classification, clustering, and association.
CO 4	Evaluate and interpret the results of data mining models.
CO 5	Design and optimize data warehouse systems for efficient querying and reporting.

INDUCT FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	1
Course title:	Research Skills	Course code	26010001
Course type:	Engineering Science	Course credit:	3

CO 1	Identify and define research problems effectively.
CO 2	Apply appropriate research methodologies and tools.
CO 3	Analyze and interpret research data critically.
CO 4	Develop coherent and well-structured research reports.
CO 5	Demonstrate ethical standards in conducting research.

STARTUP & INNOVATION UNIVERSITY

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	2
Course title:	Business Analytics	Course code	24060201
Course type:	Engineering Science	Course credit:	3

CO 1	Apply statistical and analytical methods to derive insights from business data.
CO 2	Utilize data visualization techniques to effectively communicate business insights.
CO 3	Develop predictive models to support data-driven decision-making.
CO 4	Implement machine learning algorithms to optimize business processes.
CO 5	Apply statistical and analytical methods to derive insights from business data.

STARTUP & INNOVATION UNIVERSITY

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	2
Course title:	Neural Networks	Course code	24060202
Course type:	Engineering Science	Course credit:	4

CO 1	Understand the basic concepts of neural networks and their applications in computing.
CO 2	Apply various neural network architectures to solve real-world problems.
CO 3	Analyze and evaluate the performance of different neural network models.
CO 4	Implement and optimize neural networks using modern tools and techniques.
CO 5	Explore advanced topics such as deep learning and their role in artificial intelligence.

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	2
Course title:	Cryptography and Biometrics	Course code	24060203
Course type:	Engineering Science	Course credit:	4

CO 1	Understand and apply fundamental encryption techniques and cryptographic protocols.
CO 2	Analyze the security of cryptographic systems and algorithms.
CO 3	Understand biometric recognition principles and techniques.
CO 4	Implement biometric authentication methods for security systems.
CO 5	Assess the privacy and ethical considerations of biometric data usage.

INDIA'S FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	2
Course title:	Soft Computing	Course code	24060204
Course type:	Engineering Science	Course credit:	3

CO 1	Understand the fundamental concepts of soft computing techniques.
CO 2	Apply neural networks and fuzzy logic for problem-solving in real-world scenarios.
CO 3	Design evolutionary algorithms for optimization tasks.
CO 4	Analyze hybrid systems combining neural, fuzzy, and evolutionary models.
CO 5	Implement soft computing tools for engineering and scientific applications.

INDUSTRIBLE UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	1 st	Semester:	2
Course title:	Software Project Management	Course code	24060206
Course type:	Engineering Science	Course credit:	3

CO 1	Understand project management principles and their application in software development.
CO 2	Analyze risk management strategies and develop mitigation plans.
CO 3	Apply resource management techniques for optimizing project efficiency.
CO 4	Utilize project scheduling tools for effective project execution and control.
CO 5	Demonstrate leadership and communication skills in managing software project teams.

INDUSES PERSONNERS PLYBOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	2 nd	Semester:	3
Course title:	Machine Learning	Course code	24060301
Course type:	Engineering Science	Course credit:	4

CO 1	Understand the fundamental concepts of machine learning and its applications.
CO 2	Apply supervised learning algorithms for classification and regression tasks.
CO 3	Analyze and implement unsupervised learning techniques like clustering.
CO 4	Evaluate machine learning models using performance metrics and cross-validation.
CO 5	Develop and deploy machine learning solutions for real-world problems.

Program:	Master of Engineering	Branch:	MLAI
Year:	2^{nd}	Semester:	3
Course title:	Seminar 1	Course code	24000001
Course type:	Engineering Science	Course credit:	3

CO 1	Demonstrate a sound technical knowledge of their selected seminar topics.
CO 2	Undertake problem identification, formulation and solution.
CO 3	Desing engineering solutions to complex problems utilizing a system approach.
CO 4	Communicate with engineers and the community at large.
CO 5	Demonstrate the knowledge, skills, and attitudes of a professional engineer.

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	2^{nd}	Semester:	3
Course title:	Internal Review	Course code	24000002
Course type:	Engineering Science	Course credit:	5

CO 1	To develop presentation skills
CO 2	To understand literature review, report writing skills
CO 3	To understand different software used for research.
CO 4	TO learn any one design and development of software.
CO 5	To enhance reading and writing research paper skills.

STARTUP & INNOVATION UNIVERSITY

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	2^{nd}	Semester:	3
Course title:	Dissertation Phase I	Course code	26060104
Course type:	Engineering Science	Course credit:	5

CO 1	Demonstrate the ability to identify and formulate research problems.
CO 2	Apply advanced engineering knowledge to solve complex problems.
CO 3	Design and implement experimental or simulation studies for data analysis.
CO 4	Interpret research findings to develop innovative solutions.
CO 5	Communicate technical information effectively through written and oral presentations.

STARTUP & INNOVATION UNIVERSITY

NIDE 5 FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	$2^{ m nd}$	Semester:	4
Course title:	Seminar II	Course code	24000006
Course type:	Engineering Science	Course credit:	5

CO 1	Demonstrate in-depth knowledge on a selected research topic through critical analysis.
CO 2	Develop effective communication and presentation skills for technical subjects.
CO 3	Synthesize relevant literature and research findings to support seminar discussions.
CO 4	Apply research methodologies to identify and address complex engineering problems.
CO 5	Exhibit independent learning and professional ethics in research presentation.

INDUA'S FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	$2^{\rm nd}$	Semester:	4
Course title:	External Mid Sem Review	Course code	2400004
Course type:	Engineering Science	Course credit:	4

CO 1	Demonstrate progress and understanding of ongoing project/research work.
CO 2	Apply advanced technical concepts to solve identified problems.
CO 3	Integrate feedback from reviewers for project improvement.
CO 4	Present technical work effectively to a panel of experts.
CO 5	Identify areas for further research or development in the chosen topic.

INDUCT FIRST UNIVERSITY FOR STARTUP

Program:	Master of Engineering	Branch:	MLAI
Year:	2 nd	Semester:	4
Course title:	Dissertation Phase II	Course code	24000005
Course type:	Engineering Science	Course credit:	5

CO 1	Demonstrate advanced research capabilities through critical analysis and problem-solving in the chosen topic.
CO 2	Apply specialized knowledge to design and implement innovative engineering solutions.
CO 3	Conduct in-depth experiments and data analysis to validate research findings.
CO 4	Communicate research outcomes effectively through presentations and technical reports.
CO 5	Exhibit project management skills in executing the dissertation within time and resource constraints.

INDUSTRIBLE UNIVERSITY FOR STARTUP