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Abstract. Here, XFEM is used to model structural discontinuities like cracks and holes in order to 

forecast the strength and dependability of the structure under service conditions. By contrasting 

the numerical outcomes of several issues with the analytical and experimental findings, the 

method's resilience has been shown. Additionally, XFEM is coupled with a stochastic method to 

predict the sensitivity of a structure with discontinuities (cracks and holes) under tensile loading 

conditions in terms of output COVs and fracture strength in terms of mean values of stress intensity 

factors (SIFs) using input individual and combined randomness in various system parameters. The 

second order perturbation technique has been utilized in stochastic / perturbation theory to 

forecast how constructions would fracture. The perturbation technique is also utilized as Taylor 

series expansion method and yields accurate results if the input randomness is less than twenty 

percentage. 
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1. Introduction 

We are aware that randomness always exists in reality and affects every aspect of a construction, including 

its geometry, strength, lifespan, susceptibility to damage, and fracture parameters. Even with the finest 

quality control procedures, randomness in system attributes has a major impact on how the mechanical 
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component responds to fracture. Therefore, randomness, external loads, material qualities, crack 

parameters, and geometry must all be taken into account when performing a fracture analysis on a structure. 

The stochastic fracture analysis increases the safety of structures by offering a reliable prediction of the 

fracture behaviour of the structure. The reliability evaluation methodologies can aid in the creation of 

preliminary recommendations for reliable designs. Many scholars have successfully analysed the stochastic 

fracture behaviour of the structure. Through the use of several numerical examples and the scaled boundary 

finite element method (SBFEM), Chowdhury et al. [1] completed the shape sensitivity analysis (Rahman 

and Chen [2]; Reddy and Rao [3]) of stress intensity variables to the crack size and direction. They 

performed the reliability assessment by Monte Carlo simulations (Chakraborty and Rahman [4, 5]; Choi et 

al. [6]; Evangelatos and Spanos [7]; Haldar and Mahadevan [8]; Khasin [9]; Lal and Palekar [10]). Some 

academics have talked about their work using the perturbation technique to forecast the material's stochastic 

reaction. In this regard, Rahman and Rao [11] introduced a stochastic meshless technique for resolving 

random material property boundary-value issues in linear elasticity. For the purpose of forecasting 

stochastic structure response, they created a meshless formulation. Classical perturbation expansions were 

produced in conjunction with the meshless equations to forecast the response's second-moment 

characteristics.  

The XFEM has been further improved or enhanced by many researchers through coupling the XFEM with 

another technique to overcome the difficulties faced by the general XFEM. In the direction, a new set of 

enrichment functions was proposed for solving the Poisson equation in 1D and 2D spaces and was reduced 

the analysis error by Paweł [12]. The XFEM was coupled with a constitutive law with embedded 

discontinuity (CLED) approach for modelling of mixed mode cracking in concrete structure for simplifying 

the numerical implementation (Pietruszczak and Haghighat, [13]). Improved XFEM was developed for 3D 

and demonstrated better accuracy, convergence and efficiency. It overcomes the linear dependency problem 

by utilizing an extra degree of freedom free partition of unity approximation which is based on local least-

squares fitting with a one-point interpolation constraint (Tian et al., [14]). 
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Using XFEM and various independent, combined uncorrelated and correlated input random Gaussian 

variables using SOPT and MCS, Lal and Markad [15] presented mixed mode SIFs and crack propagation 

analysis of the symmetric angle-ply laminated composite plate with through-thickness arbitrary curve 

cracks subjected to tensile and shear stress. The stochastic finite element technique is an extension of the 

MCS with uncertainty in the system parameters, such as materials, geometry, etc. given by Arregui-Mena 

et al. [16]. The spectral stochastic finite element approach and the perturbation technique (SSFEM). Lal 

and Markad [10] utilised a C0 FEM based on higher order shear deformation plate theory was used to 

evaluate the second order statistics of MMSIFs of single edge V-notched angle-ply laminated composite 

plates under in-plane tensile load with uncertainty in material parameters, crack opening, and fracture length 

(HSDT). With the help of FOPT, SOPT, and MCS, the probabilistic evaluation was carried out. 

The few researchers predicted how an infinite plate with a separate circular hole and a crack would fracture 

under tensile force. To the author's knowledge, XFEM with SOPT has not been used to investigate the 

stochastic fracture behaviour in terms of normalised MMSIFs and corresponding COVs of the infinite plate 

with various positions of a separate circular hole and a crack with various crack angles under tensile loading 

with input random parameters such as crack length, normalised radius of the hole, crack angle, and the 

central distance between separate hole and crack. 

By incorporating the individual and combined randomness in the normalised crack length, crack angle, and 

normalised radius of the hole in an isotropic plate with a hole emanating cracks using SOPT, the stochastic 

fracture response through the normalised MMSIFs is calculated. Some results are validated with MCS. 

Present work is also focuesed on effect of combined loading over stochastic fracture response of the 

structural plate in terms of normalized MMSIFs. 

2. Mathematical formulation 

The XFEM is useful for modelling discontinuities like fractures, holes or voids, inclusions, interfaces, etc. 

while including discontinuous functions in the FE mesh. The level set method (LSM) has been successfully 
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used in conjunction with the XFEM to address these problems by providing further enrichment functions 

like crack faces and crack tips. Here, the XFEM software is built upon the 2D MATLAB code by Pais [18]. 

 

Fig. 1 Area under consideration with cracks, holes, and boundary condition 

2.1 Equilibrium equation  

The surfaces of cracks and holes  are assumed traction free as are mentioned by Daux et al. [20], 

and shown in figure 1. The equilibrium equation in the domain  is: 

                            
(1) 

Small strains and displacements are taken into consideration in the current work. Thus, the relationship 

between strain and displacement illustrates the kinematics equations:  

                           
                                     

(2)  

Here,  is the symmetric part of the gradient operator and  is a displacement field vector. The boundary 

conditions for the displacements on the boundary  are:  

.                             (3) 

The constitutive relation for elastic material can be shown by Hooke’s law as: 

                            (4) 

where  is Hooke tensor or constitutive matrix for isotropic materials for plane stress and strain conditions 

in 2D.  

The equilibrium equations' weak form is provided by: 
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The linear,  and bilinear,  forms of the equation (5) are: 

                          (6) 

                          (7) 

Potential energy ( ) of an elastic body is                                      (8) 

By applying a variant of the previous equation and substituting , the minimization of the elastic 

body's potential energy may be solved, and the following set of discrete equations is produced as a result. 

                            (9) 

where,  is the global stiffness matrix,  are the global degrees of freedom and  are the applied 

loading or force. 

                        (10) 

                       (11) 

                        (12) 

2.2 XFEM Approximation  

XFEM Approximation for Cracks and voids are defined as, 

                     

(13)  

Heaviside function for a discontinuous function for the crack and voids defined as, 
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  and                                           (14) 

2.3 Level Set Method  

For crack, level set method implemented by eq. (15), and for voids by eq. (16). The sign distance function 

 to the curve  

                    

(15) 

  where, 
                    

(16) 

 

where,  is the absolute distance,  is the point on crack closest to a point with any point  on the 

crack surface .  is the radius of the ith hole. 

2.4 Evaluation of Stress Intensity Factors (SIFs) 

For general mixed-mode problems in two dimensions, SIFs and J-integral can be stated as,   

  
                        

(17) 

where,  

                     

(18) 

The -integral also follows the path-independence and it is explained 

                           (19) 

where,  is the strain energy density. For the plate of the elastic material, it can explain that 
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Now, two equilibrium, independent states of a cracked body are considered. Consider the state1, 

 
, corresponds to the present or actual state and state 2, , is an auxiliary 

state. Further, ,  and  are the auxiliary stress field, auxiliary strain filed and auxiliary 

displacement field, respectively. Thus, superposition of these two states brings another equilibrium state, 

say, . Now, we have: 

   
                   

(20) 

The strain energy densities are: 

                      (21) 

                   (22) 

2.5 Stress intensity factor (SIF) 

The Mode-I and Mode-II SIFs are formulated as, 

                        (23) 
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displacement and stress field, then by putting  and  in the equation (23), we have: 
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Similarly, if auxiliary state 2 is chosen to be state for Mode-II, then the auxiliary state is Mode-II near 
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where,   and are interaction integrals. 

3. Results and discussion 

By incorporating the individual and combined randomness in the normalised crack length , 

crack angle , and normalised radius of the hole  in an isotropic plate with a hole 

emanating cracks using SOPT, the stochastic fracture response through the normalised MMSIFs is 

calculated. Some results are validated with MCS. The input random variables are indicated by the parameter 

{ (i=1, 2 and 3). Furthermore, it is assumed that the input COV for individual and combined randomness 

in all the parameters is 15% or 0.15 variation of characteristics from their mean values in order to forecast 

the stochastic MMSIFs of the plate under tensile, shear, and combination (tensile and shear) loadings. The 

percentage of the input random parameters has been randomly adopted because in perturbation technique, 

for input COVs < 0.2 or 20 %, the solution can be obtained up to the acceptable accuracy (Stefanou [20]). 

The normalized MMSIFs in terms of  and  are expressed as: 

For Tensile loading 

 and                     (26)     

For Shear loading 

 and                    (27) 

where , , , , ,  and  are normalized Mode-I and Mode-II SIFs, numerical 

Mode-I and Mode-II SIFs, tensile, shear and combined stresses, respectively and where, .  

3.1 Convergence and validation study 

The results of Grasa et al. [21] using a first-order perturbation technique (FOPT) on the basis of analytical 

and XFEM solution for an isotropic edge cracked plate subjected to tensile loading are available and are 

compared with the mean value of Mode-I SIF using the current perturbation-based SOPT combined with 

XFEM, and they are in good agreement as shown in Table 1.  
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Table 1 Validation of SIFs of an isotropic edge cracked plate subjected to tensile loading 

Analytical Solution  

[21]  

XFEM with FOPT 

 [21]  
% Error 

XFEM with 

SOPT 
% Error 

XFEM with 

MCS 
% Error 

99.8182 98.951 0.87 100.4834 0.67 100.1276 0.31 

Rarely are the SOPT findings for the stochastic fracture analysis of the investigated model under various 

stress situations available in the literature. To validate the current stochastic fracture analysis for a/W= 0.4 

with α= 300, as indicated in Table 2, the current mean and corresponding COV {ei(i=1, 2 and 3) = 0.15} of 

MMSIFs 𝐾𝐼 and 𝐾𝐼𝐼 acquired by SOPT are compared with those obtained by MCS. 

Table 2 Behaviour of the analyzed model under different loading conditions for normalized crack length 

(a/W= 0.4) with crack angles (α= 30˚) through individual randomness in a/W by MCS with different 

numbers of samples 

Total no. of 

samples 

Tensile loading Shear loading 

    

Mean COV Mean COV Mean COV Mean COV 

9000 0.809 0.121 0.354 0.223 2.527 0.059 1.296 0.125 

9500 0.822 0.084 0.342 0.197 2.536 0.051 1.193 0.097 

10000 0.828 0.056 0.334 0.167 2.540 0.047 1.128 0.081 

10500 0.828 0.056 0.334 0.167 2.540 0.047 1.128 0.081 

11000 0.828 0.056 0.334 0.167 2.540 0.047 1.128 0.081 

The results obtained by both SOPT and MCS are in very good agreement. In the direct MCS method, the 

different sets of random samples of random system properties are generated first by direct use of the 

computer by using Gaussian random number generation. These sets of random samples are substituted in 

the response equation of MMSIFs and again generated the random samples of MMSIFs. The mean of these 

random samples gives the mean value of MMSIFs, while the variance of random samples gives the variance 

of MMSIFs. The optimum numbers of samples are decided on the basis of convergence of mean results. In 

the present analysis, 10,000 samples are used for satisfactory convergence of the results. Therefore, the 

10,000 random samples are used for further computation of results using MCS. In the present study, MCS 

is used only for validation purpose due to higher consumption of computational time, particularly for 

fracture problem with very high mesh density. 

IK IIK IK IIK
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Fig. 2(a) and 2(b) show the line diagram of an isotropic rectangular plate with the analyzed model 

with dimensions of length , width , crack length , and hole radius  and a central 

cracked plate without hole with required above-mentioned dimensions, under shear  stress.  

 

 
 

(a) (b) (c) 

 
Fig. 2  (a) A line diagram and (b) the stress contour (general) of a plate with radial cracks on a 

hole and (c) a line diagram of central crack under shear loading 

 

The behaviour of mean values of normalized MMSIFs of the analyzed model under uniform shear 

loading w.r.t. different crack angles is presented in Fig. 3(a) and 3(b). It is again clear that the SOPT results 

are in good agreement with those of MCS.  
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(a) (b) 

Fig. 3 The mean values of normalized MMSIFs (a)  and (b)  of a plate under shear 

loading with individual randomness in , and  

It can be seen that the mean values of  are largest at a crack angle α = 30°, and due to the increment 

in a/W, the mean values of 𝐾𝐼 starts to dominate at α= 15°. As the crack angle (α) increases from 0° to 30°, 

the mean values of 𝐾𝐼 are increased. Then, these values are continuously decreased to zero at 90° crack 

angle. Now, the mean values of normalized Mode-II SIFs 𝐾𝐼𝐼 of the analyzed model are maximum at 15° 

crack angle and are minimum at 45° crack angle. At α = 0° and 90°, the mean values of 𝐾𝐼𝐼 are nearly equal 

as the normalized crack length increases (a/W= 0.8). From crack angle 45° to 90°, the mean values of 𝐾𝐼 

and 𝐾𝐼𝐼 continuously decrease and increase, respectively. 

Fig. 4(a) and 4(b) show the behaviour of the mean values of normalized MMSIFs 𝐾𝐼 and 𝐾𝐼𝐼 of the 

analyzed model under uniform tensile loading with individual randomness { (i=1, 2 and 3)} with respect 

to different crack angles using SOPT and MCS. 
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(a) (b) 

Fig. 4  The mean values of normalized MMSIFs (a)  and (b)  of  plate under tensile 

loading with individual or combined randomness in ,  and  

It is clear that the SOPT results are in good agreement with those obtained using MCS. It can be seen 

that the mean values of normalized Mode-I SIFs  of the analyzed model are the largest at a crack angle 

= 0°, and the SIFs  are decreased with increment in the crack angle till 75°. At 90° crack angle, the 

SIFs  for the shorter crack lengths a/W are further increased and it is so because the compressive stresses 

dominant and so the tips of longer crack will get less influence of the buckling, as compared to the shorter 

ones and the results is the higher SIFs in shorter cracks and the lower SIFs for longer cracks. The mean 

values of normalized Mode-II SIFs  of the analyzed model are largest at a crack angle = 45° and are 

minimum (zero) at = 0° and 90°. For the crack angles  and (90◦ - ), the mean values of  are 

almost equal if the normalized crack length ( = 0.4 and 0.6) is shorter. For the longer cracks (

= 0.8), the mean values of  are not the same. 

Fig. 5(a) and 5(b) show the line diagram of the analyzed model with dimensions of length , width 

, crack length , and hole radius  and a central cracked plate without hole with required 

above-mentioned dimensions, under combined tensile  and shear  stresses.  
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The behaviour of the mean values of normalized MMSIFs  and  of the analyzed model w.r.t. 

different crack angles using SOPT is predicted and compared with the deterministic values of normalized 

MMSIFs  and  of the plate with a central crack without any hole with the same geometrical 

properties subjected to combined loading, as shown in Fig. 6(a) and 6(b). 

  
(a) (b) 

Fig. 5  Line diagrams of the plates with (a) hole emanating radial cracks and (b) a central crack 

subjected to combined loadings 

 

It can be seen that the mean values of normalized Mode-I SIFs  are highest at crack angle = 0°. 

Also, as the crack angle  is increased, the mean values of  are decreased from 0° to 90° crack angle. 

At 90° crack angle, the mean values of  are zero. For the crack angle 15°, the mean values of  are 

increased for shorter crack length ( = 0.4) because due to combined loading the stress concentration 

on the periphery of the hole, from where the cracks are emanating, will be maximum and the stress 

concentration zone will be upper and lower parts of the sides of the hole and crack. As the crack makes an 

angle of 30°, the tip of the crack will be much nearer to the stress concentration zone and more stresses will 

be on a crack tip, therefore, the mean values of  are continuously increased till angle 45° and remain 
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critical. After 45° angle, the crack tips gradually leave the stress concentration zone till angle 90°. But, for 

longer crack, the crack tip remains somewhat away from the periphery of the hole. That is why the stress 

concentration zone becomes unable to produce much effect on the crack tip. If the length of the emanating 

cracks is very large, then the hole becomes the part of crack only. 

The mean values of normalized Mode-II SIFs  are highest at a crack angle = 15° but as  

increases, the values of  start to dominate at = 30°. From crack angles 30° to 60° and 60° to 90°, the 

mean values of  decreased and increased, respectively. Now, the mean values of normalized Mode-II 

SIFs  of an isotropic plate with a hole emanating radial cracks are the largest at 15° crack angle and are 

minimum at 60° crack angle. 

At 90° crack angle, the mean value of  is zero because here, the effect of  is completely 

ineffective under the shear and combined loading. The mean values of normalized MMSIFs  and  

of an isotropic plate with a hole emanating radial cracks subjected to combined and shear loadings are much 

higher as compared to those are under tensile loading. So, it can be concluded that the combined loading is 

much critical as compared to tensile and shear loading for the present problem. 

Under all types of loading conditions, the gaps between the graphs, for the mean values of normalized 

MMSIFs  and  and the deterministic values of MMSIFs  and , are decreased as  

is increased. It is so because the smaller crack with the hole has the influence on stress concentration as 

well as it works as a small edge crack on the periphery of the hole, whereas for the larger crack, the hole 

works as a part of the crack only or the role of the hole is just like a crack. Also, the mean values of 

normalized MMSIFs  and  are increased with increment in . 
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(a) (b) 

Fig. 6  Comparison of the behavior of the mean and deterministic values of normalized MMSIFs (a) 

 and (b)  of the plate with a hole and without hole with central cracks of different lengths 

subjected to combined loading 

 

At the crack angles = 0° and 90°, the mean values of  for a plate emanating radial cracks are 

nearly equal to the deterministic values of  for the cracked plate without hole with the increment in 

normalized crack length ( = 0.8). At 60° crack angle, the mean values of  are nearly equal to the 

deterministic values of normalized Mode-II SIFs  of an isotropic cracked plate without a hole. 

 

4. Conclusions 

The fracture behaviour of the plate with discontinuities subjected to shear and combined loading conditions 

are much more critical as compared to tensile loading. Hence, proper control of these types of loading will 

increase the reliability of structures. The input random variables such as normalized crack length, crack 

angle, and normalized radius of the hole show much influence on the stochastic fracture behavior of the 

plate with discontinuities. So, the reliability and safety in a structure can be enhanced by controlling the 

input random variables properly. 
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Under tensile loadings, the plate is the least critical and sensitive when the geometry (hole emanating 

cracks) at the centre position and is the most critical and sensitive when the geometry is either side of the 

central part of the plate. Under shear and combined loadings, the plate is the least critical and sensitive 

when the geometry is below the central part of the plate and is the most critical and sensitive when the 

geometry is above the central part of the plate. 
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