Swarrnim Institute of Technology ## **M.**Tech Environmental Engineering Department ## **Cross-Cutting Issues** | | SEMESTER 1 | | | | | | |------------|---|--|--|---|--|--| | Sr.
No. | Course Name | Human Values | professional Ethics | Gender Sensitization | Environment
Sustainability | | | | APPLICATION BASED SYSTEMS FOR TRANSPORT OF WATER & WASTEWATER | Continuity principle, energy principle, momentum principle | Flow measurement and carrying capacity | Water transmission and distribution | Frictional and minor head losses | | | | | Equitable water distribution | Pipe material selection and thickness calculations | Access to safe and reliable water supply | Energy-efficient pump selection | | | 1 | | Need for transport of water and wastewater | Water hammer analysis | Inclusive sanitation | Leak minimization | | | | | Planning of water system | Leak detection in distribution systems | Protection from stormwater impacts | Use of computer software for efficient system design | | | | | Layout of distribution networks | Economics of sewer design | Equitable access in distribution networks | Conveyance of corrosive wastewaters | | | | | Storage capacity of ESR and underground reservoirs | Sewer inspection and maintenance | | Estimation of stormwater runoff | |---|--|--|--|---------------------------------------|---| | | | Design of sanitary sewer | Design of sewer outfalls (mixing conditions) | | Rainfall intensity-duration-
frequency relationships | | | | | Fair and transparent water and wastewater planning | | Rational methods in drainage system design | | | | Combined and separate drainage systems | | | | | | ENVIRONMENTAL
CHEMISTRY &
MICROBIOLOGY | Significance of Environmental Chemistry | Equilibrium Chemistry | Colloidal Chemistry | Units of Measurement | | | | Stoichiometry | Physical Chemistry | Organic Chemistry | Stoichiometry | | 2 | | Organic Chemistry | Measurement of Pollution Parameters | Pollution Parameters | Equilibrium Chemistry | | | | Nuclear Chemistry | Principles of Gravimetric,
Volumetric, and Colorimetric
Analysis | Impact of Water Quality
on Health | Colloidal Chemistry | | | | • | Gas Chromatographic
Methods | Turbidity, Colour, and pH
Analysis | Nuclear Chemistry | | | | Biochemical Oxygen | | Alkalinity and Hardness | Wastewater Analysis | |---|------------------------------------|--|---|---|---| | | | Demand | Polarographic Methods | Testing | Methods | | | | Dissolved Oxygen | Observations, Measurements and Isolation of Microorganism | Scope and Areas of
Environmental
Microbiology | Testing of Sulphurous
Compounds | | | | Nitrogenous
Compounds | | | Applications in Pollution
Monitoring | | | | Cell and its Structure | Techniques of Staining and Enumeration of Microorganism | Microscopy and
Micrometry | Biochemical and Chemical
Testing for Environmental
Protection | | | | Introduction to Enzyme and Metabolic Reactions | Spectrophotometry, Flame
Photometry | Classification of Microorganisms | Optical Methods
(Absorption, Fluorometry) | | | | Aerobic and Anaerobic
Respiration | | | Applied Microbiology of Soil, Air, Water | | | | | | | Biological Processes of
Wastewater Treatments | | | | | | | Industrial Microbiology | | 3 | ENVIRONMENTAL IMPACT
ASSESSMENT | Public Participation | EIA Notification Provisions | Public Hearing
Procedure and
Guidelines | Evolution of EIA | | | | Role of NGO in Public
Hearing | Procedure for Environmental
Clearance | ISOCIAL ASPECTS IN | Concepts, Methodologies,
Screening, Scoping,
Baseline Studies | |---|---------------------------------|--|--|---|--| | | | Economic Development and Environmental Degradation | Cost Benefit Analysis | Community Involvement in Project Planning | Mitigation Measures | | | | | Practical Considerations in
Impact Assessment | | Methods of Impact
Analysis (Adhoc, Checklist,
Matrix, Network, Index
Methods) | | | | | | | Location of Industries | | | | | | | Environmental Impacts of
Typical Industries and
Projects | | | | | | | Case Studies of Engineering Projects | | | | | | | Environmental
Management Plan | | 4 | WATER & WASTEWATER TECHNOLOGIES | Water Quality
Requirements | Wastewater Effluent
Standards | Access to Safe Drinking
Water | Physical, Chemical, and
Biological Water
Treatment Processes | | | | | Operational Problems in Filtration | Health Impacts of Water
Contamination | Sedimentation, Coagulation and Flocculation | |---|-----------------------------------|---|--|---|--| | | Biological Parameters of
Water | Application of Advanced Treatment Technologies | Community-Based
Water Management
Participation | Filtration Technologies and
Design | | | | | Disinfection and Public
Health | Water Supply Scheme Design
Considerations | | Theory and Methods of Disinfection | | | | | | | Wastewater Biological Unit
Processes | | | | | | | Ion Exchange and
Membrane Processes | | | | | | | Water Quality Indices | | 5 | RESEARCH SKILLS | limprove vour work | Understand bias, theoretical position, and evidence produced | Understand inclusive language and representation in writing | Identify key areas in your field with sustainable impact | | | | Know and follow the process of reviewing and proofreading | Distinguish between your point and the evidence | Promote equal participation in research presentations | Find gaps in knowledge related to sustainability issues | | | | Prepare to answer questions with integrity and humility | Identify acceptable levels of error and justify them | Avoid gender bias in critique and literature review | Select research problems addressing environmental concerns | |------------|---|---|--|--|--| | | | Acknowledge evidence in written work | Recognize quality and authenticity of sources | | Use effective literature search strategies for sustainability-related research | | | | | SEMESTER 2 | | | | Sr.
No. | Course Name | Human Values | professional Ethics | Gender Sensitization | Environment Sustainability | | | | Waste Reduction (Vol. & Strength reduction, Neutralization, Equalization) | Standards for Disposal into
Different Sinks | Standards for Disposal,
Sludge & Pollution
Control | Industrial Water
Treatment | | | | Standards for disposal | Sludge Treatment | | Waste Reduction | | 1 | INDUSTRIAL WATER & WASTEWATER TREATMENT | Economic Aspects of
Waste Treatment | Economic Aspects (CETPs) | | Standards for Disposal | | | | | | CETPs & Joint Treatment | Sludge Treatment | | | | Pollution Control in | Pollution Control in | | Saline Water Conversion | | | | Industries | Industries | | Pollution Control in
Industries | | | | Sources, Types, Effects of Air Pollution | Ambient Air Quality & Emission Standards | Effects of Air Pollution | Stack Plume Behavior,
Wind Flow, Mixing Height | |---|-------------------------------|---|---|--------------------------------------|---| | | | Ambient Air Quality & Emission Standards | Dispersion Modeling | Indoor Air & Automobile
Pollution | Control Methods
(Particulate & Gaseous) | | 2 | AIR & NOISE POLLUTION CONTROL | Noise Pollution | Stack Sampling & Pollution
Control | | Automobile Pollution | | | | Sampling & Control
Methods | Gaseous & Automobile Pollution Control | Noise Pollution | Noise Pollution | | | | Gaseous Pollution
Control | Noise Pollution | | | | 3 | INDUSTRIAL HYGIENE & SAFETY | Historical Aspects,
Concept, Scope, Role of
IH | Industrial Hygiene vs.
Occupational Health | Ergonomics | Role of Environmental
Engineer | | | | Engineering Controls
(Hierarchy, PPE,
Substitution) | Coordination among Safety
Officer, Medical Officer, IH | Occupational Diseases | EHS Program | | | | Ergonomics | Monitoring Strategies & TLVs | Toxicology | Air Sampling, Ventilation,
Emission Controls | | | | | Control Techniques & PPE
Standards | Physical Agents | Toxicology & Hazardous
Agents | | | | Toxicology & Occupational Diseases | Incident Reporting & Investigation | Occupational Health | Legislation & Environment | |---|------------------------------------|---|--|----------------------------------|---| | | | Legislation | Legislation on Safety & Health | Services | Act | | | | Sources & Classification,
Need for Waste
Management | Indian Waste Management
Legislation (MSW, BMW, E-
waste, etc.) | Handling & Segregation at Source | Sources & Classification of Waste | | | | Roles of Stakeholders | Hazardous Waste Transport & Labelling | Biomedical Waste | Waste Characterization & Reduction | | 4 | SOLID & HAZARDOUS WASTE MANAGEMENT | Waste Disposal & Rehabilitation | Biomedical Waste Treatment | E-waste & Informal
Sector | Waste Processing & Thermal Conversion | | | | Standards for Hazardous Waste Generators | Financing Waste Management | Economic Aspects of | Landfill Design, Leachate & Gas Management | | | | Extended Producer
Responsibility | EPR & Waste Exchange | Waste Management | E-waste, Plastics, Fly Ash,
Nuclear Waste | | | | Science of Climate | | | Greenhouse Gases & | | 5 | CLIMATE CHANGE | Change & Global Warming | Climate Modeling | Climate Impacts | Climate Modeling | | | | Greenhouse Gases & Carbon Emissions | Kyoto Protocol, CDM,
Emission Trading | Adaptation Strategies | Impacts on Forests, Water,
Energy, Agriculture | | | | Impacts & Adaptation | Environmental Economics | Health Impacts of Climate Change | Renewable Energy & Mitigation | |------------|------------------------------------|---|--|--|--| | | | Climate Mitigation
Technologies & Green
Buildings | Mitigation Policies | Policy & Participation | Environmental Economics | | | | Climate Policy
Frameworks | Vulnerability & Adaptation | | | | | | | SEMESTER 3 | | | | Sr.
No. | Course Name | Human Values | professional Ethics | Gender Sensitization | Environment Sustainability | | 1 | AIR POLLUTION CONTROL
EQUIPMENT | Role of NGOs | Design and operation of control equipment with accuracy and accountability | Health implications of air pollution with respect to vulnerable groups | Control of particulate matter and gaseous pollutants | | | | Awareness of health impacts of particulate matter | Justification of collection efficiencies and performance claims | Equitable access to clean air technologies and public participation | Gravity settling chambers, cyclone separators, and electrostatic precipitators | | | | Importance of air quality for community well-being | Responsible use of hazardous control technologies | Gender-sensitive planning in pollution control projects | Scrubbers, filters, adsorption and condensation systems | | | | | | | Mist elimination and regenerative systems for energy conservation Design of air pollution control equipment | |------------|---|--|----------------------------------|---------------------------------|--| | | | | SEMESTER 4 | | | | Sr.
No. | Course Name | Human Values | professional Ethics | Gender Sensitization | Environment Sustainability | | | ENVIRONMENTAL
LEGISLATIONS &
MANAGEMENT | Environmental Legislation & Enforcement | Environmental Protection
Acts | Pollution Effects & Legislation | Air, Water & Land Pollution
Acts | | | | Functions of Pollution
Control Boards | Enforcement Challenges | Energy-Efficient
Buildings | Environmental Monitoring & Audit | | 1 | | Constitutional Provisions & Duties | Environmental Audit (ISO 14000) | Environmental
Governance | ISO 14000 & EMS | | | | Energy-Efficient
Buildings | CDM & Carbon Trading | CDM & Community | Energy Conservation in Buildings | | | | CDM & Sustainability | Penal Code & Legal
Provisions | Projects | CDM & UNFCCC
Mechanisms |